Patents Examined by Chuong Nguyen
  • Patent number: 8649970
    Abstract: A method, system, and computer program product for providing popular routes via a global positioning satellite (GPS) system. A GPS device receives a route request from a user. The GPS device then determines a current location of the GPS device and connects to a network server. In response to connecting to the network server, the GPS device transmits a route selection request to the network server. In response, the GPS device receives a route selection list from the network server where the route selection list contains a plurality of routes previously taken by other drivers. Each route is assigned a popularity rating. The GPS device displays one or more of the routes of the route selection list, and requests that a user select a route. After the user selects a route the GPS device displays the selected route as an overlay on a map display.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: February 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kulvir S. Bhogal, Robert Ross Peterson, Lisa Seacat DeLuca
  • Patent number: 8634985
    Abstract: A method of detecting an in-range failure of a brake pedal position sensor includes calculating the difference between a minimum position and a maximum position of the brake pedal position sensor. The calculated difference is weighted to define a fast test weighted input value and/or a full test weighted input value. A cumulative test result value is incremented by the fast test weighted input value and/or the full test weighted input value. The cumulative test result value is filtered to define a moving average of the cumulative test result value after each incremented occurrence. The moving average of the cumulative test result value is tracked to determine if the brake pedal position sensor is functioning properly.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew M. Zettel, John F. Van Gilder, Ammar A Atmeh, Stanley D Sullivan
  • Patent number: 8565959
    Abstract: Multiple leak rate methodologies are combined and operate in parallel in a system for providing optimal results under different tire conditions. The methodologies may operate continuously or alternatively. Tandem large leak rate and low leak rate algorithms and methodology, for example, may deployed in a system in which, for large leak rates, a large leak rate methodology is employed and used to trigger a warning. At some pre-designated low leak rate threshold value, the system employs a low leak rate methodology either as an exclusive diagnostic monitor or in parallel with the companion large leak rate methodology. In the low leak rate analytical system, a change in tire pressure is correlated to a change in energy within a vehicle system pursuant to the algorithm W=??P*dx and derivative algorithms are used to calculate a final time and pressure drop at the final time as a basis for issuing a low pressure warning.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: October 22, 2013
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Jack Edward Brown, Jr.
  • Patent number: 8494741
    Abstract: A vehicle control device performs a program including the step of obtaining a target point for movement based on information from a vehicle exterior camera, the step of obtaining a distance X to the target point, the step of resetting a distance counter, the step of causing the vehicle to enter accelerated running at set acceleration, the step of causing the vehicle to change from the accelerated running to constant-speed running when the distance counter reaches X, and the step of causing the vehicle to change from the constant-speed running to decelerated running when the distance counter reaches X.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: July 23, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hideki Takamatsu
  • Patent number: 8478492
    Abstract: Embodiments of the present invention are directed to a method and system for performing non-contact based determination of the position of an implement. In one embodiment, a non-contact based measurement system is used to determine the relative position of an implement coupled with a mobile machine. The geographic position of the mobile machine is determined and the geographic position of said implement based upon the geographic position of the mobile machine and the position of the implement relative to the mobile machine.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: July 2, 2013
    Assignee: Caterpillar Trimble Control Technologies, Inc.
    Inventors: Arthur James Taylor, Mark Nichols, Philip Jackson
  • Patent number: 8412435
    Abstract: A system, method and computer program product is provided for detecting if a vehicle has spun. A normal force and a lateral force of each of a front and rear axle of a vehicle is estimated. A coefficient of friction representative of a surface is estimated. Lateral momenta of the front and rear axles based on the coefficient of friction and the normal and lateral forces is calculated. Whether a surplus momentum is present, is determined. If the surplus momentum is present, a yaw rate of the vehicle is integrated respect to time to obtain a vehicle rotation estimation.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations, LLC
    Inventor: Daniel S. Maitlen
  • Patent number: 8370053
    Abstract: A method of method of assigning routes for a plurality of users allocated to different classes is provided. A first group of users is identified based on a user classification, wherein each user of the first group of users has a first user classification. A second group of users is identified based on the user classification, wherein each user of the second group of users has a second user classification. The first user classification is different from the second user classification. A disutility value is calculated for each user of the first group of users and for each user of the second group of users using a travel disutility function based on an origin and a destination of each user of the first group of users and each user of the second group of users. A bi-level problem solver is executed to optimize the disutility value based on the user classification.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: February 5, 2013
    Assignee: Trafficcast International, Inc.
    Inventor: Jing Li
  • Patent number: 8321124
    Abstract: A security and tracking apparatus includes at least a first signaling unit and a second signaling unit, wherein the apparatus is adapted for transmitting the location of each signaling unit when the first and second signaling units are separated by more than a preselected distance. A method to locate a person, animal, or object, includes providing in contact with or at least in close proximity to the person, the animal, or the object, at least a first signaling unit and a second signaling unit, wherein each respective signaling unit is adapted for identifying the location of the signaling units and for transmitting the location of the signaling units when the first and second signaling units are separated more than a preselected distance; and activating the signaling units to transmit the location of the signaling units.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: November 27, 2012
    Assignee: C2 Global Technologies, Inc.
    Inventors: Benedict S. Curatolo, Thomas E. Cornelius
  • Patent number: 8290660
    Abstract: To provide external access to a specification file stored in at least one memory unit, which is associated with at least one electronic control unit which may be in a vehicle, a computer is connected to a first communication bus in the vehicle. A first module in the computer is adapted to communicate with the at least one electronic control unit over the first communication bus. Provided that a user-unique key is connected to a port of the computer and a software component of this key is set to an active authorization state, the computer is enabled to communicate with the at least one electronic control unit. Thus, the computer may read out the specification file as well as update the specification file.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: October 16, 2012
    Assignee: Scania CV AB (publ)
    Inventors: Stanislaw Lazarz, Kurt Flatischler
  • Patent number: 8239077
    Abstract: A method and a device for an aircraft for detecting noise in a signal of LOC type. A first step includes estimating a first lateral speed of the aircraft according to a first set of parameters. Concurrently, at least one second lateral speed of the aircraft is estimated according to at least one second set of parameters, among which at least one parameter is of different nature from each parameter of the first set of parameters. A second step includes comparing the first lateral speed and the at least one second lateral speed according to a threshold. If the difference between the first lateral speed and the at least one second lateral speed is greater than the threshold, the presence of noise in the signal of LOC type is detected.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: August 7, 2012
    Assignee: Airbus Operations SAS
    Inventor: Alexandre Colomer
  • Patent number: 8180505
    Abstract: An onboard solar cell array current and voltage characteristic determination method is preferably used on small spacecraft and determines the solar cell orientation relative to the sun by a comparison between prelaunch solar cell characteristics with on-orbit solar cell characteristics well suited for spin axis determinations and monitoring the degradation of on-orbit solar cells over the operational life of a picosatellite.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: May 15, 2012
    Assignee: The Aerospace Corporation
    Inventors: Edward J. Simburger, Daniel L. Rumsey, Simon H. Liu, John S. Halpine
  • Patent number: 8131413
    Abstract: An electric motor and conversion system includes a direct current power source, a rotor with two sides and two series of permanent magnets alternating in polarity, two stators on opposing sides of the rotor where each stator has a series of winding coils, magnet position identifiers, and a control system comprising a sensor that cooperates with the magnet position identifiers and a microcontroller to individually controls winding drivers. Preferably, the number of magnets on the rotor does not equal the number of winding coils on the stators. Also preferably, the magnet position identifiers are a series of apertures on the rotor through which signals pass. The conversion system can also include connectors for connecting to an axle, a removable throttle, and electric cables for electrically connecting the components.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 6, 2012
    Assignee: Max Power Motors, LLC
    Inventor: Max Yuan
  • Patent number: 8112185
    Abstract: A remote engine start confirmation and vehicle monitoring and control system includes a transmitter and a controller capable of receiving and processing transmitter signals, the controller comprising a monitoring circuit for detecting a first pulsed voltage pattern and a second pulsed voltage pattern across the battery during an engine start procedure, a signaling circuit for signaling the disengagement of the starter from the engine after a detection of the termination of the first pulsed voltage pattern and the start of the second pulsed voltage pattern, and an initiation circuit for initiating the monitoring of a vehicle condition, such as overheating or low fuel, after the detection. A method for controlling the vehicle operation includes detecting an occurrence of a vehicle condition and performing an operation based on the detection, such as terminating ignition voltage or fuel supply or notifying the operator of the vehicle condition via the transmitter.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: February 7, 2012
    Assignee: DEI Headquarters, Inc.
    Inventor: Anthony M. Wu
  • Patent number: 8078344
    Abstract: A display system and method for an aircraft displays, in real-time, the protected airspace associated with a CTL maneuver. The system processes aircraft approach category data and determines the protected airspace based at least in part on the processed aircraft approach category. An image representative of the determined protected airspace is displayed on the aircraft flight deck display system.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: December 13, 2011
    Assignee: Honeywell International Inc.
    Inventors: David B. Dwyer, Aaron J. Gannon
  • Patent number: 8060275
    Abstract: An on-board diagnostic system of a vehicle comprises disabling diagnostic operation, such as a misfire monitor, based on road roughness. In one example, the disabling of the diagnostic operation is based on brake actuation and degradation of an anti-lock braking system.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: November 15, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Jahan Asgari, Timothy Feldkamp, Craig Stephens, Moses Fridman, Davor Hrovat, Arthur Varady, Mitch McConnell
  • Patent number: 8050817
    Abstract: In one example, a network device stores a mapping of application operation modes to vehicle conditions such as a first condition of the vehicle powered but not moving and a second condition of the vehicle moving. The network device receives a wirelessly transmitted request for a particular application to utilize an interface powered by the vehicle. The network device compares an application identifier specified by the received request to the mapping. The network device then identifies a portion of the vehicle interface according to the comparison and signals control software on the vehicle to grant the particular application access to only the identified portion of the vehicle interface itself. The application can reside on the mobile device and utilize the vehicle interface as an extended interface, or the application can reside on the vehicle.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 1, 2011
    Assignee: Airbiquity Inc.
    Inventors: Kamyar Moinzadeh, Leon L. Hong, Lee Zhao
  • Patent number: 7532966
    Abstract: A torque steer compensation algorithm utilizing selected vehicle parameters, such as for example engine torque, accelerator pedal position, throttle position, transmission gear, and vehicle speed. Rates of change of the parameters are determined and compared to predetermined thresholds, whereby a torque steer factor is determined. The resulting torque steer factor is subsequently multiplied with a conventional, prior art predicted steering assist signal to arrive at a modified steering assist signal which is output to the coil of the steering column to reduce driver perception of torque steer at the steering wheel.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: May 12, 2009
    Assignee: General Motors Corporation
    Inventors: Stacey M. Blundell, Norman Joseph Weigert, Rodney A. D. Jones, Paul S. Shaub
  • Patent number: 7386395
    Abstract: A method for providing dynamic disturbance compensation to an inertial system is described. The method includes determining estimated correction factors based on received acceleration components, and dynamically determining filter coefficients for a filter configured to receive velocity and position signals and output a prediction error. The method further includes combining the estimated correction factors and the prediction error into adjustment factors, where the prediction error is configured to be a feedback control signal, and applying the adjustment factors to compensate the inertial system such that effects of the dynamic disturbance are removed.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: June 10, 2008
    Assignee: Honeywell International Inc.
    Inventor: Siméon Masson
  • Patent number: 7383111
    Abstract: A steering apparatus for a vehicle includes a steering angle measuring unit, a vehicle speed measuring unit, a yaw rate measuring unit, a yaw rate-based reaction force control unit for controlling a steering reaction force depending on an actual yaw rate measured by the yaw rate measuring unit, and a yaw rate deviation-based reaction force control unit for determining a standard yaw rate depending on at least the steering angle and the vehicle speed, calculating a yaw rate deviation between the standard yaw rate and the actual yaw rate, and controlling the steering reaction force depending on the yaw rate deviation, and a primary control unit for executing a control operation such that a degree of contribution of the yaw rate-based reaction force control unit is decreased and a degree of contribution of the yaw rate deviation-based reaction force control unit is increased as the yaw rate deviation increases.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: June 3, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shigenori Takimoto, Osamu Tsurumiya, Yasushi Shoda, Masato Yuda
  • Patent number: 7349767
    Abstract: An intention estimation and operation assistance system for estimating an operator's intention and providing assistance to operation of a machine. Reference data, such as the operation of a plurality of hypothetical operators, is provided for comparison with the operation of a real operator, to determine an estimated intention of the operator. The estimated operator is utilized to alter the operation of the machine, to provide a safer and/or smoother operation experience in operating the machine.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: March 25, 2008
    Assignees: Nissan Motor Co., Ltd., Drexel University
    Inventors: Nobuyuki Kuge, Tomohiro Yamamura, Dario Salvucci