Patents Examined by Daborah Chacko-Davis
  • Patent number: 11966159
    Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: April 23, 2024
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
  • Patent number: 11966158
    Abstract: The purification of monoalkyl tin trialkoxides and monoalkyl tin triamides are described using fractional distillation and/or ultrafiltration. The purified compositions are useful as radiation sensitive patterning compositions or precursors thereof. The fractional distillation process has been found to be effective for the removal of metal impurities down to very low levels. The ultrafiltration processes have been found to be effective at removal of fine particulates. Commercially practical processing techniques are described.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: April 23, 2024
    Assignee: Inpria Corporation
    Inventors: Benjamin L. Clark, Dominick Smiddy, Thomas J. Lamkin, Mark Geniza, Joseph B. Edson, Craig M. Gates
  • Patent number: 11960205
    Abstract: Method for manufacturing a horology component, including manufacturing (E1) a first structure (10) from a first photosensitive resin (31) having at least one layer of photosensitive resin having a first pattern obtained by polymerizing the first photosensitive resin by irradiation through at least one mask (4), then developing the first photosensitive resin; and transforming (E2) the first structure (10) into a second structure (1) by structuring at least one surface of the first structure by the addition of a second photosensitive resin (32) to the at least one surface, the second structure (1) being intended to at least partially form a manufacturing mold for the horology component.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 16, 2024
    Assignee: ROLEX SA
    Inventors: Florian Calame, Alexandra Maegli, Xavier Multone
  • Patent number: 11960209
    Abstract: A developing treatment method for performing a developing treatment on a resist film on a substrate, includes the following. (A) supplying a developing solution to the substrate and developing the resist film to form a resist pattern; (B) supplying a water-based cleaning liquid to the developed substrate to clean the substrate with the water-based cleaning liquid; (C) applying an aqueous solution of a water-soluble polymer to the substrate cleaned with the water-based cleaning liquid to form a hydrophilic layer having a hydrophilic property on a surface of the substrate; and (D) cleaning the substrate on which the hydrophilic layer has been formed, with a rinse liquid. (B) includes (a) accelerating a rotation speed of the substrate; and (b) after (a), decelerating the rotation speed of the substrate until a start of (C), wherein a deceleration in (b) is lower than an acceleration in (a).
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: April 16, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Akiko Kai, Hiroshi Ichinomiya
  • Patent number: 11953828
    Abstract: Provided is a method of making a circuit pattern. The method includes: Step (A): providing a master substrate comprising a first photosensitive layer containing photosensitive particles; Step (B): providing an energy beam to reduce metal ions in a predetermined area of the first photosensitive layer to form multiple first metal particles; Step (C): removing unreduced photosensitive particles by a fixer to obtain a master mask; wherein the first metal particles form a first predetermined pattern in the master mask; Step (D): providing a chip comprising a second photosensitive layer containing second photosensitive particles; Step (E): putting the master mask on the second photosensitive layer and providing an energy beam to reduce metal ions of an uncovered part of the second photosensitive layer to form multiple atomized second metal particles; Step (F): removing unreduced photosensitive particles by a fixer to obtain the circuit pattern having line spacing at picoscopic/nanoscopic scale.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: April 9, 2024
    Assignee: LONGSERVING TECHNOLOGY CO., LTD
    Inventor: Ko-Cheng Fang
  • Patent number: 11955343
    Abstract: Two-stage bake photoresists with releasable quenchers for fabricating back end of line (BEOL) interconnects are described. In an example, a photolyzable composition includes an acid-deprotectable photoresist material having substantial transparency at a wavelength, a photo-acid-generating (PAG) component having substantial transparency at the wavelength, and a base-generating component having substantial absorptivity at the wavelength.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, Marie Krysak, James M. Blackwell, Florian Gstrein, Kent N. Frasure
  • Patent number: 11940726
    Abstract: A lithography apparatus comprises a light source for emitting light; a mask mounting zone where a mask for reflecting the light is disposed; and a mask protective module disposed on the mask to transmit the light from the light source toward the mask. The mask protective module comprises a frame and a membrane supported by the frame, wherein the membrane includes a penetration region for transmitting the light and a peripheral region of which a light transmittance is lower than that of the penetration region.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: March 26, 2024
    Assignee: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY
    Inventors: Jinho Ahn, Jung Hwan Kim, Seongchul Hong
  • Patent number: 11940731
    Abstract: Photoresist topcoat compositions comprise: a matrix polymer and a surface active polymer, wherein the surface active polymer comprises polymerized units of the following general formula (I): wherein: R1 represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, or a C1-C4 haloalkyl group; R2 independently represents a hydrogen atom or an optionally substituted alkyl group, wherein at least one R2 is not a hydrogen atom, wherein the R2 groups taken together optionally form a cyclic structure, and wherein the total number of carbon atoms for the R2 groups taken together is from 2 to 20; R3 represents an optionally substituted C1-C4 alkylene group, wherein an R2 group optionally forms a cyclic structure with R3; and R4 independently represents C1-C4 fluoroalkyl groups; wherein the total polymerized units of general formula (I) are present in the surface active polymer in an amount of 95 wt % or more based on total polymerized units of the surface active polymer; and wherein the surface active polymer i
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: March 26, 2024
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Irvinder Kaur, Cong Liu, Doris Kang, Chunyi Wu
  • Patent number: 11935748
    Abstract: A method of fabricating a device is presented. The method includes forming a multilayer stack (101?, 102?, 103?) on a substrate (10?, 100?) which has a principal surface. The multilayer stack includes a supporting layer (102?) formed over the principal surface of the substrate and a photoresist layer (103?) formed on the supporting layer, patterning the multilayer stack to form at least one opening such that the photoresist layer is undercut by the supporting layer and anisotropically dry etching the substrate.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: March 19, 2024
    Assignee: Google LLC
    Inventor: Anthony Edward Megrant
  • Patent number: 11914291
    Abstract: A resist composition comprising a base polymer and an acid generator containing a sulfonium salt which is structured such that an iodized or brominated hydrocarbyl group (exclusive of iodized or brominated aromatic ring) is bonded to a benzene ring via an ester bond-containing group offers a high sensitivity, minimal LWR and improved CDU independent of whether it is of positive or negative tone.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: February 27, 2024
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Jun Hatakeyama, Takayuki Fujiwara
  • Patent number: 11906897
    Abstract: A reflective mask includes a reflective multilayer over a substrate, a capping layer over the reflective multilayer, an absorber layer over the capping layer and including a top surface, and a protection layer directly on the top surface of the absorber layer. The absorber layer is formed of a first material and the protection layer is formed of a second material that is less easily to be oxidized than the first material.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Cheng Hsu, Yih-Chen Su, Chi-Kuang Tsai, Ta-Cheng Lien, Tzu Yi Wang, Jong-Yuh Chang, Hsin-Chang Lee
  • Patent number: 11899364
    Abstract: This disclosure relates to a dry film structure that includes a carrier substrate, and a polymeric layer supported by the carrier substrate. The polymeric layer includes at least one fully imidized polyimide polymer.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: February 13, 2024
    Assignee: Fujifilm Electronic Materials U.S.A., Inc.
    Inventors: Binod B. De, Sanjay Malik, Raj Sakamuri, William A. Reinerth, Ognian N. Dimov, Ahmad A. Naiini
  • Patent number: 11886121
    Abstract: A method of forming a patterned photoresist layer includes the following operations: (i) forming a patterned photoresist on a substrate; (ii) forming a molding layer covering the patterned photoresist; (iii) reflowing the patterned photoresist in the molding layer; and (iv) removing the molding layer from the reflowed patterned photoresist. In some embodiments, the molding layer has a glass transition temperature that is greater than or equal to the glass transition temperature of the patterned photoresist. In yet some embodiments, the molding layer has a glass transition temperature that is 3° C.-30° C. less than the glass transition temperature of the patterned photoresist.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: January 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chih Ho, Ching-Yu Chang, Chin-Hsiang Lin
  • Patent number: 11874600
    Abstract: A photosensitive composition including metal nanoparticles capped with an organic ligand, wherein the metal particles includes a metal that absorbs light in the extreme ultraviolet spectrum. A method including synthesizing metal particles including a diameter of 5 nanometers or less, wherein the metal particles includes a metal that absorbs light in the extreme ultraviolet spectrum; and capping the metal particles with an organic ligand. A method including depositing a photosensitive composition on a semiconductor substrate, wherein the photosensitive composition includes metal nanoparticles capped with an organic ligand and the nanoparticles include a metal that absorbs light in the extreme ultraviolet spectrum; exposing the photosensitive composition to light in an ultraviolet spectrum through a mask including a pattern; and transferring the mask pattern to the photosensitive composition.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: January 16, 2024
    Assignee: Intel Corporation
    Inventors: Marie Krysak, James M. Blackwell, Robert L. Bristol, Florian Gstrein
  • Patent number: 11852966
    Abstract: A lithography mask includes a substrate, a reflective structure disposed over a first side of the substrate, and a patterned absorber layer disposed over the reflective structure. The lithography mask includes a first region and a second region that surrounds the first region in a top view. The patterned absorber layer is located in the first region. A substantially non-reflective material is located in the second region. The lithography mask is formed by forming a reflective structure over a substrate, forming an absorber layer over the reflective structure, defining a first region of the lithography mask, and defining a second region of the lithography mask. The defining of the first region includes patterning the absorber layer. The second region is defined to surround the first region in a top view. The defining of the second region includes forming a substantially non-reflective material in the second region.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Hsiang Lin, Chien-Cheng Chen, Hsin-Chang Lee, Chia-Jen Chen, Pei-Cheng Hsu, Yih-Chen Su, Gaston Lee, Tran-Hui Shen
  • Patent number: 11841618
    Abstract: A photoresist apparatus and a method are provided. The photoresist apparatus includes a pre-baking apparatus. The pre-baking apparatus includes: a hot-plate, a first cover over the hot-plate, a second cover over the first cover, a first heating element extending along a topmost surface of the first cover, and a second heating element extending along a topmost surface of the second cover.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Jui Kuo, De-Yuan Lu, Chen-Hua Yu, Ming-Tan Lee
  • Patent number: 11835852
    Abstract: A reflective mask blank includes a multilayer reflective film, and a pattern film to be partially etched when processing into a mask. The multilayer reflective film and the pattern film are placed on/above a substrate in this order from the substrate side. The pattern film includes an absorber film and a surface reflection enhancing film in this order from the substrate side. The relation of ((n?1)2+k2)1/2>((nABS?1)2+kABS2)1/2+0.03 is satisfied, nABS and kABS being a reflective index and an absorption coefficient of the absorber film at a wavelength of 13.53 nm, respectively, and n and k being a reflective index and an absorption coefficient of the surface reflection enhancing film at a wavelength of 13.53 nm, respectively.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: December 5, 2023
    Assignee: AGC Inc.
    Inventor: Hiroyoshi Tanabe
  • Patent number: 11822238
    Abstract: The present disclosure provides a method for lithography patterning in accordance with some embodiments. The method includes forming a photoresist layer over a substrate, wherein the photoresist layer includes a metal-containing chemical; performing an exposing process to the photoresist layer; and performing a first developing process to the photoresist layer using a first developer, thereby forming a patterned resist layer, wherein the first developer includes a first solvent and a chemical additive to remove metal residuals generated from the metal-containing chemical.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Ren Zi, Joy Cheng, Ching-Yu Chang, Chin-Hsiang Lin
  • Patent number: 11809075
    Abstract: A lithography mask includes a substrate that contains a low thermal expansion material (LTEM). The lithography mask also includes a reflective structure disposed over the substrate. The reflective structure includes a first layer and a second layer disposed over the first layer. At least the second layer is porous. The mask is formed by forming a multilayer reflective structure over the LTEM substrate, including forming a plurality of repeating film pairs, where each film pair includes a first layer and a porous second layer. A capping layer is formed over the multilayer reflective structure. An absorber layer is formed over the capping layer.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: November 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Tsung Shih, Shih-Chang Shih, Li-Jui Chen, Po-Chung Cheng
  • Patent number: 11803121
    Abstract: Method for manufacturing a master pattern for a mold for a horology component, wherein the method includes manufacturing a first structure from a first photosensitive resin comprising at least one layer of photosensitive resin comprising a first pattern obtained by polymerizing the first photosensitive resin by irradiation through at least one mask, then developing the first photosensitive resin; and transforming the first structure into a second structure by structuring at least one surface of the first structure by the addition of a second photosensitive resin to the at least one surface.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: October 31, 2023
    Assignee: ROLEX SA
    Inventors: Florian Calame, Alexandra Maegli, Xavier Multone