Patents Examined by Daniel M. Robert
  • Patent number: 11709503
    Abstract: Aspects of the technology relate to exception handling for a vehicle. For instance, a current trajectory for the vehicle and sensor data corresponding to one or more objects may be received. Based on the received sensor data, projected trajectories of the one or more objects may be determined. Potential collisions with the one or more objects may be determined based on the projected trajectories and the current trajectory. One of the potential collisions that is earliest in time may be identified. Based on the one of the potential collisions, a safety-time-horizon (STH) may be identified. When a runtime exception occurs, before performing a precautionary maneuver to avoid a collision, waiting no longer than the STH for the runtime exception to resolve.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: July 25, 2023
    Assignee: Waymo LLC
    Inventors: Dong Li, Matthew McNaughton, Shir Yehoshua, Aida Khosroshahi, Ioan-Alexandru Sucan
  • Patent number: 11691621
    Abstract: A driving support apparatus comprises a controller for performing collision avoidance braking control and lane deviation suppressing control. When a performing condition of the lane deviation suppressing control is satisfied at a timing of the collision avoidance braking control is about to be performed, the controller makes direction determination processing for determining whether or not the own vehicle travels to a direction toward which it will collide with a target object or to a direction toward which it will avoid colliding with the target object. In the direction determination processing, when it is determined the own vehicle travels to a collision direction, the controller stops the lane deviation suppressing control to perform the collision avoidance braking control, and when it is determined the own vehicle travels to a collision avoidance direction, the controller performs cooperative control for making the lane deviation suppressing control cooperate with the collision avoidance braking control.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: July 4, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuhei Miyamoto, Kohei Morotomi
  • Patent number: 11691632
    Abstract: A simulating method for an electric vehicle (EV) includes: receiving a request from a driver of the EV for performing a simulation of a target vehicle on the EV; obtaining a plurality of configuration parameters for simulating behavior of the target vehicle on the EV, at least including information of the target vehicle and settings of the target vehicle for the driver; obtaining a plurality of vehicle parameters of the EV, at least including run-time parameters of the EV and driving conditions of the EV; and performing a simulating process to obtain one or more control parameters to control the EV to realize behaviors, actions, and/or characteristics of the target vehicle on the EV based on the plurality of vehicle parameters and the plurality of configuration parameters using a vehicle simulator model. The vehicle simulator model is a neural network.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: July 4, 2023
    Assignee: MERCEDES-BENZ GROUP AG
    Inventors: Jeffrey Chen, Noah Gibbon
  • Patent number: 11673573
    Abstract: A vehicle is a vehicle on which an ADK is mountable. The vehicle includes: a VP that controls the vehicle in accordance with an instruction from the ADK; and a VCIB that serves as an interface between the ADK and the VP. The VP outputs an accelerator pedal position signal in accordance with an amount of depression of an accelerator pedal by a driver, and outputs an accelerator pedal intervention signal, to the ADK through the VCIB. The accelerator pedal intervention signal indicates that the accelerator pedal is depressed, when the accelerator pedal position signal indicates that the amount of depression is larger than a threshold value, and indicates beyond autonomy acceleration of the vehicle, when an acceleration request in accordance with the amount of depression is higher than a system acceleration request.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: June 13, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Ikuma Suzuki
  • Patent number: 11654902
    Abstract: Embodiments provide a vehicle computer coupled to a vehicle. The vehicle computer may be configured to compute (e.g., generate) an automated lane change maneuver moving the vehicle from a first lane into a second, adjacent lane. The lane change maneuver may have commenced while the maneuver was safe to conduct, but a threat vehicle (or another threat object) may be subsequently detected moving into the same target lane. The option to immediately abort the maneuver and return to the original lane may not be appropriate after some time into the lane change maneuver. The vehicle computer may control the vehicle in a lateral position hold along the lane demarcation line for a predetermined amount of time before moving into the second lane when the threat vehicle clears the second lane or returning to the first lane when the threat vehicle does not clear the second lane.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: May 23, 2023
    Assignee: PlusAI, Inc.
    Inventors: Robert Joseph Dingli, Lichun Yang, Mohammadhussein Rafieisakhaei
  • Patent number: 11634132
    Abstract: In deceleration set processing, first-class and second-class deceleration are specified. The first-class deceleration is deceleration of the vehicle corresponding to a first-class state. The first-class state is a state of a slowdown target of the vehicle. The second-class deceleration is deceleration of a following moving body corresponding to a second-class state. The second-class state is a state of the vehicle as viewed from the following moving body. If a minimum value of the first-class deceleration (a first-class minimum value) is equal to or greater than a minimum value of the second-class deceleration (a second-class minimum value), target deceleration is set to the first-class minimum value. Otherwise, based on a second-class minimum value phase, the target deceleration is set to deceleration equal to or greater than the second-class minimum value. The second-class minimum value phase is a phase to which the second-class minimum value belongs in a second deceleration feature.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 25, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Taichi Kawanai
  • Patent number: 11634147
    Abstract: A method includes an initial trailer health assessment and real-time trailer health monitoring. The initial trailer health assessment includes autonomous pre-trip maneuvers of the autonomous vehicle during a first time period, and detecting a pre-trip vehicle health condition. A vehicle health score is calculated based on the pre-trip vehicle health condition. If the vehicle health score is at least a threshold value, real-time trailer health monitoring is performed during a trip of the autonomous vehicle during a second time period, by actively monitoring vehicle dynamics data and/or image data associated with the autonomous vehicle, to determine a fault condition of the autonomous vehicle. If the fault condition meets a first criteria, a control parameter and/or a travel plan of the autonomous vehicle is adjusted. If the fault condition meets a second criteria different from the first criteria, a signal is sent to cause the autonomous vehicle to cease movement.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: April 25, 2023
    Assignee: PlusAI, Inc.
    Inventors: Siva Bhargav Ravella, Xiaoyu Huang
  • Patent number: 11628723
    Abstract: A method of controlling posture of a vehicle is provided to determine a minute tendency of understeer or oversteer of the vehicle and to control the posture of the vehicle when recognizing the minute tendency of the understeer or oversteer while driving the vehicle straight. The includes determining whether torque is applied to drive wheels while driving the vehicle and acquiring equivalent inertia information of a drive system in real time based on drive system operation information in response to determining that the torque is being applied to the drive wheels. The understeer or oversteer of the vehicle is determined from the equivalent inertia information obtained in real-time.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: April 18, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Ji Won Oh, Jeong Soo Eo
  • Patent number: 11618439
    Abstract: In a vehicle teleoperation session, a speed limit is determined for which the vehicle can be safely teleoperated. A safety system senses data relating to the vehicle environment and generates a depth map from which obstacles in the vicinity of the vehicle can be identified. Based on the detected obstacles and a motion state of the vehicle, a speed limit is determined at which the teleoperator is predicted to be able to utilize an emergency braking command to avoid a collision. The speed limit may be automatically applied to the vehicle or may be provided to the teleoperator to enable the teleoperator to adjust the vehicle speed.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 4, 2023
    Assignee: Phantom Auto Inc.
    Inventors: Shay Magzimof, David Parunakian, Vladimir Roumenov Glavtchev
  • Patent number: 11618436
    Abstract: A vehicle control apparatus includes a steering device, a steering controller, a steering input member, a front-rear driving force distribution unit, and a behavior controller. The steering device steers front wheels of a vehicle. The steering controller controls and causes the steering device to perform steering automatically. The steering input member receives a steering operation inputted by a driver. The front-rear driving force distribution unit changes a front-rear driving force distribution ratio. The behavior controller predicts, if a steering operation is performed via the steering input member during the automatic steering, a behavior of the vehicle to be exhibited after steering corresponding to the steering operation, and causes, if an oversteer behavior is predicted to occur, the front-rear driving force distribution unit to change the driving force distribution ratio to a front-wheel biased distribution ratio as compared with a case where the oversteer behavior is not predicted to occur.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: April 4, 2023
    Assignee: SUBARU CORPORATION
    Inventors: Harunobu Horiguchi, Ryoichi Mizutani, Akihisa Osada, Yohei Kawashima, Yuki Sugimoto
  • Patent number: 11618445
    Abstract: An industrial vehicle including: a direction calculation unit that calculates an instructed travel direction of the vehicle based on an operation position of the direction instruction member; a vehicle speed calculation unit that calculates an actual speed of the vehicle; a switching unit that switches between permission and prohibition of regenerative braking limit; and a control unit that controls traveling of the vehicle. The control unit is configured to be switchable between a regenerative braking limit state where the regenerative braking limit is performed and a regenerative braking limit release state where the regenerative braking limit is released, when the vehicle speed limit mode is activated and the regenerative braking limit is permitted. The control unit has at least one control pattern that switches between the regenerative braking limit state and the regenerative braking limit release state when a predetermined condition is satisfied.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: April 4, 2023
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventor: Takehiro Kubotani
  • Patent number: 11584366
    Abstract: A braking control device for controlling braking of a host vehicle. For a state in which a host vehicle is stopped in an intersection by automatic emergency braking and an oncoming vehicle is approaching in an oncoming lane, the host vehicle prohibits secondary braking, flashes a hazard lamp, and prohibits an idling stop. For a state in which it is determined in that the vehicle is stopped and it is determined in that it is safe for the vehicle to start moving, the host vehicle releases stop maintenance braking.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: February 21, 2023
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yosuke Ito, Takaharu Oguri, Kei Kamiya, Takahiro Baba, Ryo Takaki, Tomoyuki Doi
  • Patent number: 11580207
    Abstract: Systems and methods to authenticate a vehicle operator for an autonomous vehicle on a vehicle service platform are provided. In one example embodiment, a computer-implemented method includes obtaining authentication request data indicative of an authentication request, the authentication request data including at least an operator identifier associated with the vehicle operator and a vehicle identifier associated with the autonomous vehicle. The method includes providing a service code associated with the authentication request to the autonomous vehicle. The method includes obtaining from a user device in response to providing the service code to the autonomous vehicle, operator data associated with the authentication request, the operator data including the service code. The method includes determining an authentication result associated with the authentication request based at least in part on the service code and the operator data. The method includes providing the authentication result to the user device.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: February 14, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Mark Yen, Joseph Maliksi, Roman Kuzmenko, Andrii Iasynetskyi, Matthew Charles Ellis Wood
  • Patent number: 11577750
    Abstract: A method for determining information related to a lane change of a target vehicle includes obtaining information related to an environment of the target vehicle. The information related to the environment relates to a plurality of features of the environment of the target vehicle. The plurality of features are partitioned into two or more groups of features. The method further determines two or more weighting factors for the two or more groups of features. An attention mechanism is used for determining the two or more weighting factors. The method further determines the information related to the lane change of the target vehicle based on the information related to the environment of the target vehicle using a machine-learning network. A weighting of the plurality of features of the environment of the target vehicle within the machine-learning network is based on the two or more weighting factors for the two or more groups of features.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: February 14, 2023
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Naveen Shankar Nagaraja, Oliver Scheel, Loren Schwarz
  • Patent number: 11577739
    Abstract: Methods and systems of enabling a transportation mode on a telematics device coupled to a vehicle are provided. One method includes detecting a first event or receiving a command for enabling a transportation mode, running a transportation mode power-saving scheme in response to receiving the first event or the command, and exiting the transportation mode power-saving scheme in response to detecting a second event.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: February 14, 2023
    Assignee: Geotab Inc.
    Inventors: Thomas Arthur Walli, James Patrick Howell
  • Patent number: 11572061
    Abstract: A system for controlling a remote smart parking assist (RSPA) system is provided. The system includes an engine control unit (ECU) that is configured to operate an engine and an RSPA controller that is configured to receive vehicle state information from the ECU regarding whether or not a vehicle system error occurs and, if an error occurs, whether or not the error is an error in which a vehicle is possible to be driven. The RSPA controller is further configured to transmit torque request information to the ECU when the vehicle system error is an error in which the vehicle is possible to be driven.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 7, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sun-Young Park, Oh-Eun Kwon
  • Patent number: 11572049
    Abstract: A brake control device controls a hydraulic brake that generates hydraulic braking force and an electric parking brake that generates parking braking force different from the hydraulic braking force. The brake control device comprises: a detection unit that detects a parking brake operation for causing the electric parking brake to generate the parking braking force; and a control unit that causes the electric parking brake to generate the parking braking force when the hydraulic braking force per wheel generated by the hydraulic brake, after decreasing below the minimum first braking force per wheel required for maintaining the vehicle stop state only by the electric parking brake, is less than the first braking force, in association with the parking brake operation having been performed in a state where the stop state is maintained only by a hydraulic brake operation for causing the hydraulic brake to generate the hydraulic braking force.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: February 7, 2023
    Assignee: ADVICS CO., LTD.
    Inventors: Tatsuya Urano, Keita Nakano, Terushige Uraoka
  • Patent number: 11535249
    Abstract: A method for determining a vehicle action includes: by a controller that acquires travel situation information of a road on which a host vehicle travels and determines a driving action from the travel situation information, setting at least one control determining point on a first route on which the host vehicle travels, the control determining point determining whether to run or stop the host vehicle; and determining whether to run or stop the host vehicle at the control determining point before the host vehicle reaches the point. The controller determines whether or not the host vehicle enters a road on which another vehicle or a pedestrian travels or walks with priority over the host vehicle on the first route; and where it is determined that the host vehicle enters the road on which the other vehicle or pedestrian travels or walks with priority, sets the control determining points more densely.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: December 27, 2022
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Takato Kurokawa
  • Patent number: 11524694
    Abstract: A vehicle control apparatus that comprises a first control unit and a second control unit each configured to perform travel control of a vehicle, a first communication line configured to connect the first control unit and the second control unit, a second communication line configured to connect the first control unit and an operation unit configured to operate based on a control signal transmitted from one of the first control unit and the second control unit, and a third communication line configured to connect the operation unit and the second control unit. The vehicle control apparatus further comprises a fourth communication line configured to connect the first control unit and the operation unit.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: December 13, 2022
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Jun Ibuka, Akira Shiogai, Jun Ochida, Kouhei Miyamoto
  • Patent number: 11505199
    Abstract: A method for cleaning up vehicle driving data includes receiving vehicle driving data of a vehicle within a predetermined time period, the vehicle driving data comprising vehicle mileage data and vehicle status data; determining a first mileage of the vehicle within the predetermined time period based on the vehicle mileage data; determining a second mileage of the vehicle within the predetermined time period based on the vehicle status data; and judging whether the first mileage is abnormal data based on the second mileage.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: November 22, 2022
    Assignee: Zhiji Automotive Technology Co., Ltd.
    Inventors: Shiyi Fan, Wei Zhang, Gang Qian, Ruixue Wang, Fei Chen, Xinyu Zheng