Patents Examined by David C. Meyer
  • Patent number: 6734418
    Abstract: A control part 7 detects pulse widths of four continuous pulses, and a pulse width w1 of a pulse detected first is compared in size with a pulse width w2 of a pulse detected second and when w2 is larger, normality is determined. The pulse width w2 of the pulse detected second is compared in size with a pulse width w3 of a pulse detected third and when w3 is larger, normality is determined. The pulse width w3 of the pulse detected third is compared in size with the pulse width w1 of the pulse detected first and when w1 is larger, normality is determined. In the above first to fourth determinations, when the number of cases determined as normality is two times or more, normal rotation is determined, and otherwise, reverse rotation is determined.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: May 11, 2004
    Assignee: Funai Electric Co., Ltd.
    Inventor: Chiaki Hashimoto
  • Patent number: 6720548
    Abstract: A nonlinear optical crystal is composed of 2-adamantyl-5-nitorpyridine (AANP) allowing the type 2 phase matching to the sampling light and a measuring object light, emitting a sum frequency light of the measuring object light and the sampling light, with the polarization directions thereof being perpendicular to each other, when the sampling light and measuring object light multiplexed by a multiplexer are entered. When the sum frequency light is emitted through the nonlinear optical crystal, a control portion controls the polarization direction of the sampling light so as to be parallel to a predetermined reference axis located within a plane perpendicular to a phase matching direction of the nonlinear optical crystal. The predetermined reference axis is a single axis maintaining parallelism with the crystal axis of the nonlinear optical crystal even if the wavelength of the inputted light is changed.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: April 13, 2004
    Assignees: Anritsu Corporation, Nippon Telegraph & Telephone Corporation
    Inventors: Akihito Otani, Toshinobu Otsubo, Hidehiko Takara, Ippei Shake, Satoki Kawanishi
  • Patent number: 6713756
    Abstract: There is disclosed an optical encoder in which a scale can be displaced to cross a first light beam emitted from a first light source, and has a first light modulation region formed of a predetermined-period optical pattern irradiated with the first light beam to generate a diffraction pattern. First photodetector has a light receiving surface for receiving the first light beam transmitted through the first light modulation region of the scale, and has a single or a plurality of light receiving element group formed at a predetermined interval corresponding to the diffraction pattern. A second light modulation region modulates optical properties of the second light beam emitted from a second light source. Second photodetector receives the second light beam whose optical properties are modulated by the second light modulation region.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: March 30, 2004
    Assignee: Olympus Corporation
    Inventors: Eiji Yamamoto, Takeshi Ito, Jun Hane
  • Patent number: 6713749
    Abstract: A Loss Of Signal (LOS) circuit in an opto-electronic receiver circuit. The LOS circuit includes a current to voltage converter and a comparator circuit. The current to voltage circuit receives a current signal including a DC current signal component from a photodetector circuit included in the opto-electronic receiver. The current to voltage receiver generates a voltage signal in response to the DC current signal. The comparator circuit receives the voltage signal from the current to voltage circuit and generates a LOS signal from the voltage signal by comparing the voltage signal to a reference voltage signal.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: March 30, 2004
    Assignee: Vitesse Semiconductor Corporation
    Inventors: Adam A. Wu, Balagopal Mayampurath
  • Patent number: 6710324
    Abstract: An optoelectronic distance measuring device has at least one transmitter unit to transmit pulsed electromagnetic radiation, at least one receiver unit associated with the transmitter unit to receive the reflected radiation and an evaluation unit to determine at least the distance of objects reflecting the transmitted radiation, with a series connection of load resistors being connected after the receiver unit and a separate amplifier being associated with each load resistor to amplify the subsidiary pulse produced at the respective load resistor from an incoming, successively attenuated received pulse.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: March 23, 2004
    Assignee: Sick AG
    Inventor: Johann Hipp
  • Patent number: 6710328
    Abstract: A composite structure contains crystalline and/or polycrystalline triboluminescent elements distributed therein externally and/or internally, totally and/or regionally. The structure is instrumented with at least one optical fiber which is coupled therewith penetratingly and/or superficially/tangentially. Each optical fiber is exteriorly light transparent/translucent along at least a longitudinal portion thereof which is situate in the vicinity of at least one triboluminescent element. Concomitant with the occurrence of damage in and/or on the structure is the occurrence of mechanical action with respect to at least one triboluminescent element, a consequence of which is the occurrence of triboluminescence which, to at least some degree, passes radially into at least one optical fiber so as to reach the optical fiber's transmissive axial core and thereby be transmitted to remotely located photosensitive equipment. The triboluminescent elements can exist wholely and/or partly in various capacities, e.g.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: March 23, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stephen A. Mastro, Veerendra K. Mathur, Andrew W. Jarrett
  • Patent number: 6710331
    Abstract: A near-field microscope comprising: a probe for scattering a near-field light; light emitting device including a light source for emitting light to a sample or said probe; and light sampling device for sampling and detecting a light that includes information of the sample scattered by said probe, said microscope comprising: control device for spacing said sample or probe from a field of a near-field light generated by said light emission or disposing the sample or probe at a position that is shallow in a field of near-field light, thereby detecting a noise by said light sampling device; inserting said sample or probe deeply into a field of near-field light generated by said light emission, thereby detecting light intensity by said light sampling device; and computing device for computing a measurement result obtained by subtracting a noise from said light intensity.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: March 23, 2004
    Assignee: Jasco Corporation
    Inventors: Yoshihito Narita, Shigeyuki Kimura
  • Patent number: 6707027
    Abstract: An optical input device for an apparatus generates input signals by moving the device and an object (15) relative to each other and measures the movement by the effects of self-mixing in a diode laser (3, 5) and Doppler shift caused by the movement. For each measuring axis (X, Y, Z), radiation from a diode laser (3, 5) is converged on a window (12) across which the object (15) moves. Part of the radiation scattered by the object, whose frequency is Doppler-shifted due to the movement, re-enters the laser cavity (20) and causes a change in cavity properties. By measuring such a change, for example, by a photo diode, information about the movement is obtained. As the input device is small and cheap, it can be used in a number of different consumer apparatus.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: March 16, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Martin Dieter Liess, Aldegonda Lucia Weijers, Olaf Thomas Johan Antonie Vermeulen
  • Patent number: 6703598
    Abstract: A semiconductor photodetecting apparatus 1 comprises a base 2 and a CCD chip 4. The CCD chip 4 is secured to the base 2 when a resin 8 is supplied and cured. The base 2 is formed with a gas supply path 15 and a gas exhaust path 16. Each of the gas supply path 15 and gas exhaust path 16 has one end opening to the upper face 2d of the base 2, and the other end opening to an end face of a mounting portion 2a. A gas storage section 19 and a gas supply pump 20 are connected to the gas supply path 15, whereby the gas supply pump 20 supplies N2 gas stored in the gas storage section 19 to a space within the base 2 by way of the gas supply path 15. The N2 gas supplied to the space is discharged from the gas exhaust path 16 after being refluxed through the space.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: March 9, 2004
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Masaharu Muramatsu, Katsumi Shibayama, Tomohisa Itoh
  • Patent number: 6703615
    Abstract: A light receiving and emitting probe including a conductive nanotube probe needle with its base end fastened to a holder and its tip end protruded, a light receiving and emitting body formed on this probe needle, a lead wire fastened to the light receiving and emitting body, and a power supply that applies an electric voltage between both ends of the lead wire and the probe needle. Light is emitted and received by the light receiving and emitting body when an electric current passes through the light receiving and emitting body. A light receiving and emitting probe apparatus includes the above-described light receiving and emitting probe, a scanning mechanism that allows the light receiving and emitting probe to scan over a sample, and a control circuit that causes the light receiving and emitting body of the light receiving and emitting probe to receive and emit a light.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: March 9, 2004
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Akio Harada
  • Patent number: 6703595
    Abstract: An optical data-processing apparatus is provided for writing data to a data storage disk or reading data from the disk. The data-processing apparatus includes first and second light splitters. The first splitter splits reflected light from the storage disk into two semicircular rays. The second splitter splits these two semicircular rays into non-biased light and biased light. The data-processing apparatus also includes an optical detector for receiving the non-biased light and the biased light, thereby producing a first signal corresponding to the non-biased light and a second signal corresponding to the biased light. Based on the first and the second signals, a focus error signal and a spherical aberration signal are produced.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: March 9, 2004
    Assignee: Fujitsu Limited
    Inventor: Kyoko Tadaki
  • Patent number: 6700108
    Abstract: An imaging or viewing system, which automatically compensates for bright spots, which tend to overload or saturate imaging system. The system can be used with imaging type tracking systems, viewers and various types of optical devices which heretofore have been unable to provide satisfactory performance due to saturation or overloading of an imaging device due to bright spots, i.e., laser radiation flares or sunlight. The system in accordance with the invention is configured such that reflected radiation is imaged onto a first image plane without dividing the incoming radiation into two optical paths. A digital mirror device, i.e., is disposed at the first image plane. The radiation level of each pixel in the image plane is compared with a fixed threshold on a pixel by pixel basis and used to generate a mirror drive signal that automatically reduces the reflectivity of the corresponding mirror pixel to compensate for bright spots.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: March 2, 2004
    Assignee: Northrop Grumman Corporation
    Inventor: Peter M. Livingston
  • Patent number: 6686580
    Abstract: An image sensor package includes a substrate and an image sensor coupled to the substrate. The image sensor includes an upper surface having an active area. A reflector lid is coupled to the substrate. The reflector lid has a first panel having a planar surface. The planar surface is at least partially reflective and is angled relative to the upper surface of the image sensor to reflect electromagnetic radiation to the active area of image sensor.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: February 3, 2004
    Assignee: Amkor Technology, Inc.
    Inventors: Thomas P. Glenn, Steven Webster, Roy Dale Hollaway
  • Patent number: 6683321
    Abstract: The present invention provides a portable counter and corresponding method for counting articles arranged in a stack, like compact discs and dvds. The portable nature of the counter enables the counter to be brought and placed adjacent to the stack of discs, which are often times relatively much heavier than the counter, for providing an accurate count of the discs. The counter further employs several error checking type functions, which serves to insure and enhance the accuracy of the count, as well as alert the user of potential problems.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: January 27, 2004
    Assignee: Record Products of America, Inc.
    Inventors: Rod Livingston, Robert Roczynski
  • Patent number: 6680472
    Abstract: Fibre optic apparatus for accurate and repeatable measurements of light comprising one or more wavelength ranges, and system employing the apparatus. The apparatus according to the invention comprises: a directional coupler adapted to lead the light into an optical fibre, said optical fibre containing at least one analysis filter for each wavelength range, said analysis filters consisting of at least one fibre-optical Bragg-grating (FBG) which reflects incident light with a chosen wavelength back through said directional coupler and onto a detector having an associated signal processing unit, a modulator device for pulsing the incident light with a chosen pulse width, and an optical fibre delay line in front of each analysis filter, with a length adapted to provide for a sufficient time delay larger than the pulse width, so that the pulses reflected from each analysis filter at different wavelengths can be separated in time and thereby be demodulated in the signal processing unit.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: January 20, 2004
    Assignee: Optoplan AS
    Inventors: Dag Thingbø, Jon Thomas Kringlebotn
  • Patent number: 6657184
    Abstract: A mouse for navigating upon grainy surfaces is equipped with at least two optical navigation circuits having different views of the work surface and whose axes may be non-parallel. For each navigation circuit an indication of navigation impairment owing to grain is detected. A suitable algorithm chooses from among the various navigation circuits which one's output to use. The multiple optical navigation circuits can each be separate self-contained mechanisms on separate dies or they can be separate sections of a single integrated circuit. The various metrics used within a navigation circuit for spatial filter selection can be further used by the navigation circuit selection algorithm. Each optical navigation circuit can have its own light source, or they can share a common one. They may also share any imaging optics, although each navigation sensor sees a different image.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: December 2, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Mark A Anderson, Brian J. Misek, Allen C. Norskog, Zachary Dietz
  • Patent number: 6642493
    Abstract: A modular base for a position sensitive Photo-Multiplier Tube (PS-PMT) that can be connected to other similar modular bases to form arrays of PS-PMTs. X and Y resistor chains are provided within the base to connect all X and Y coordinate anodes from the PS-PMT, respectively. An amplifier is provided at each end of each resistor chain to amplify output signals when the base is used alone; not connected to other bases. Jumpers associated with each amplifier are provided to include the amplifier in the output signal path or bypass the amplifier and connect to jumpers of other bases. When a base is used alone, the jumpers, which provide either an X or Y output signal, are set to include the amplifier in the output signal path. When two bases are connected together, the jumpers are set to bypass their associated amplifiers and connect the respective X or Y resistor chains of the two bases.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: November 4, 2003
    Assignee: Southeastern Universaties Research Assn.
    Inventors: Fernando J Barbosa, Stanislaw Majewski, Juan J. Vaquero
  • Patent number: 6642498
    Abstract: The present invention is directed to a micromirror optical multiplexer for directing light to an array of sensors. The micromirror optical multiplexer directs light from one or more sources onto multiple, coplanar sensors for the purpose of exciting fluorescence. The micromirror optical multiplexer includes at least one light source and a micromirror array having a top face and up to four side faces. Pivotable mirrors of the micromirror array are arranged in a multiple row, multiple column format on the top face. In addition, each of the side faces of the micromirror array has at least one row of pivotable mirrors. By pivoting one side face mirror and one top face mirror, a light source entering at one corner of the micromirror array can be directed to exit near normal incidence anywhere on the bottom of the device.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: November 4, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Edward Verdonk, David A. King, Richard D. Pering, Richard J. Pittaro, Shahida Rana, Frederick A. Stawitcke
  • Patent number: 6635859
    Abstract: A light to frequency converter includes a temperature coefficient generator, a programmable gain amplifier, and a current controlled oscillator having at least one photodiode configured to receive incident light, the at least one photodiode configured for generating a photodiode control current. The temperature coefficient generator outputs a bandgap reference voltage with temperature coefficient compensation (VBG_TC) in response to a bandgap reference voltage (VBG). The programmable gain amplifier is responsive to the bandgap reference voltage with temperature coefficient compensation (VBG_TC) for outputting an oscillator reference voltage (VREF).
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: October 21, 2003
    Assignee: Texas Advanced Optoelectric Solutions, Inc.
    Inventor: William W. Wiles, Jr.
  • Patent number: 6624404
    Abstract: There is provided a method for fabricating a CMOS image sensor having enhanced reliability and light sensitivity, which comprises the steps of providing a substrate including photosensitive elements and metal wire; forming a first protecting film for protecting the elements over the substrate, covering the metal wire; forming a flattened spin-on-glass film on the first protecting film; forming a second protecting film for protecting the elements on the spin-on-glass film; forming color filter patterns on the second protecting film; forming a photoresist film for flattening on the color filter patterns and the second protecting film; and forming microlenses on the photoresist film. By using the flattened SOG film and a photoresist for flattening and pad opening, the present invention can accomplish the thickness uniformity of the color filter corresponding to each unit pixel, the wire-bonding pad devoid of the residuals of the color filter materials and the figure uniformity of the microlenses.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: September 23, 2003
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Ju-Il Lee, Nan-Yi Lee