Patents Examined by Deborah Crouch
  • Patent number: 9018437
    Abstract: The invention discloses novel model of transgenic mammal, a method of crossbreeding transgenic mammal and the use of the transgenic mammal for assessing prevention and/or treatment methods for cardiovascular and other diseases related to lipoprotein(a). The transgenic mammal expresses human apolipoprotein (a) (apo(a)) and human apolipoprotein B-100 (apo B-100) genes and produces human lipoprotein (a), apo (a) and apo B-100 and produces no vitamin C. This novel dual transgenic mammal is the ideal model for testing pharmaceutical compounds for efficacy and usefulness in the prevention and/or treatment of human diseases.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: April 28, 2015
    Inventors: Matthias W Rath, Aleksandra Niedzwiecki, John Chang-Eun Cha
  • Patent number: 9017657
    Abstract: The invention relates to a cell culture method, particularly to a co-culture method for human mesenchymal stem cells and target animal cells, in order to solve the problem that animal cells are not easy to survive alone upon culturing. The invention also provides a method for using a stem cell conditioned medium to culture animal cells. The invention also provides a method to induce the transformation of human fetal islet-like cell clusters from human stem cells and its application thereof.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: April 28, 2015
    Assignee: National Taiwan University
    Inventors: Shing-Hwa Liu, Kuo-Ching Chao, Kuo-Fang Chao
  • Patent number: 9017658
    Abstract: The present invention is directed to the use of mitotically and/or lethally inactivated stem cells for the repair of damaged organs and/or tissues. Stem cells are mitotically and/or lethally inactivated and transplanted into damaged tissue. Any form of ex vivo inactivation of stem cells may be used such that the stem cells cannot undergo mitosis or cell division before in vivo application. Mitotically and/or lethally inactivated stem may be used to ameliorate numerous disease, injury, traumatic, ischemic, aging, and/or degenerative conditions in different types of organs and/or tissues.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: April 28, 2015
    Inventor: Richard Burt
  • Patent number: 9011837
    Abstract: Endothelial implants restore vascular homeostasis after injury without reconstituting vascular architecture. Endothelial cells line the vascular epithelium and underlying vasa vasorum precluding distinction between cellular controls. Unlike blood vessels, the airway epithelium is highly differentiated and distinct from endothelial cells that line the bronchial vasa allowing investigation of the differential control tissue engineered cells may provide in airways and blood vessels. Through airway injury and cell culture models, tissue engineered implants of the bronchial epithelium and endothelium were found to promote synergistic repair of the airway through biochemical regulation of the airway microenvironment. While epithelial cells modulate local tissue composition and reaction, endothelial cells preserve the epithelium; together their relative impact was enhanced suggesting both cell types act synergistically for airway repair.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 21, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Elazer R. Edelman, Brett Zani
  • Patent number: 9012217
    Abstract: Methods and small molecule compounds for stem cell differentiation are provided.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: April 21, 2015
    Assignees: Burnham Institute for Medical Research, Human Biomolecular Research Institute
    Inventors: Mark Mercola, Marcia Dawson, John Cashman, Paul J. Bushway
  • Patent number: 9005967
    Abstract: The present invention provides a method for improving iPS cell generation efficiency, which comprises a step of introducing a Myc variant having the following features: (1) having an activity to improve iPS cell generation efficiency which is comparative to, or greater than that of c-Myc; and (2) having a transformation activity which is lower than that of c-Myc; or a nucleic acid encoding the variant, in a nuclear reprogramming step. Also, the present invention provides a method for preparing iPS cells, which comprises a step of introducing the above Myc variant or a nucleic acid encoding the variant and a combination of nuclear reprogramming factors into somatic cells. Moreover, the present invention provides iPS cells comprising the nucleic acid encoding the Myc variant which can be obtained by the above method, and a method for preparing somatic cells which comprises inducing differentiation of the iPS cells.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 14, 2015
    Assignee: Kyoto University
    Inventors: Shinya Yamanaka, Masato Nakagawa
  • Patent number: 8980628
    Abstract: This invention relates to methods of producing hair folliclesin vitro, compositions for producing hair follicles in vitro, in vitro produced hair follicles, methods of providing an in vitro produced hair shaft at an interfollicular or intrafollicular site, methods of treating hair loss by providing an in vitro produced hair shaft at an interfollicular or intrafollicular site and assays for studying the effect of test agents on hair biology. The invention also provides the similar methods and products which are, or use, immature follicles (“defined herein as proto-hairs”). The invention provides a method for in vitro production of a hair follicle or a proto-hair comprising co-culturing dermal papilla cells with keratinocytes, and optionally with melanocytes.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 17, 2015
    Assignee: Aderans Research Institute, Inc.
    Inventors: Jizeng Qiao, Jeffrey Keeler Teumer, Erica Jean Philips
  • Patent number: 8980630
    Abstract: The present invention relates to stem cells obtained from the amnion and their methods of obtaining and culturing. The present invention further relates to compositions comprising amnion-derived stems cells (ADSCs) and to methods of using ADSCs.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: March 17, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Dale Woodbury, Akiva J. Marcus
  • Patent number: 8975068
    Abstract: Disclosed herein are methods for controlling stem cell differentiation through the introduction of transgenes having Xic, Tsix, Xite, or Xic flanking region sequences to block differentiation and the removal of the transgenes to allow differentiation. Also disclosed are small RNA molecules and methods for using the small RNA molecules to control stem cell differentiation. Also disclosed are stem cells genetically modified by the introduction of Xic, Tsix, XUe, or Xic flanking region sequences.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: March 10, 2015
    Assignee: The General Hospital Corporation
    Inventor: Jeannie T. Lee
  • Patent number: 8975072
    Abstract: Provided are: a method for producing an immortalized human erythroid progenitor cell line, enabling efficient and stable production of enucleated red blood cells; and a method for producing human enucleated red blood cells from a human erythroid progenitor cell line obtained by the aforementioned production method. An expression cassette capable of inducing expression of HPV-E6/E7 genes in the presence of DOX was introduced into the genomic DNA of blood stem cells. Then, the blood stem cells were cultured in the presence of DOX and a blood growth factor. Thereby, immortalized cell lines of human erythroid progenitor cells were established. Further, it was revealed that culturing the cell lines under a condition where the expression of the HPV-E6/E7 genes was not induced enabled differentiation induction into enucleated red blood cells at a high ratio.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: March 10, 2015
    Assignee: Riken
    Inventors: Yukio Nakamura, Ryo Kurita
  • Patent number: 8969078
    Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 3, 2015
    Assignee: SanBio, Inc.
    Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
  • Patent number: 8969081
    Abstract: Disclosed are methods for generating a neuron expressing Hoxc8 transcription factor or a caudal motor neuron comprising culturing an embryonic stem cell in a composition which is essentially free of retinoids and comprises an isotonic salt solution, so as to generate the neuron which expresses Hoxc8 transcription factor or the caudal motor neuron. Disclosed are also methods for generating a caudal brachial motor neuron, a thoracic motor neuron, or a lumbar motor neuron from an embryonic stem cell in a composition essentially free of retinoids and comprising ADFNK medium, an amount of FGF-2, or Gdf11 respectively. Disclosed are also methods of transplanting a motor neuron into a subject comprising generating the motor neuron and transplanting the motor neuron into the subject. Disclosed is also a population of motor neuron cells enriched for motor neuron cells expressing Foxp1 and expressing a gene associated with Spinal Muscular Atrophy (SMA) or Amyotrophic Lateral Sclerosis (ALS).
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: March 3, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Hynek Wichterle, Thomas M. Jessell, Mirza Peljto
  • Patent number: 8956868
    Abstract: The present invention provides a method for producing iPS cells, comprising reacting cells with at least one connexin inhibitor and at least one TGF? signaling inhibitor; iPS cells comprising at least one connexin inhibitor; an iPS cell inducer comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors; a medium for inducing iPS cells, comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors; and a kit for inducing iPS cells, comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: February 17, 2015
    Assignee: LSIP, LLC
    Inventors: Tetsuro Takamatsu, Ping Dai
  • Patent number: 8956866
    Abstract: The present invention concerns RPE cells obtainable by directed differentiation from stem cell, particularly, human stem cells. It has been specifically found that culturing stem cells in the presence of one or more member of the TGF? superfamily, such as Activin A) induced directed differentiation into mature and functional RPE cells. This was evidenced by the expression of markers specific to mature RPE cells, including MiTF-A, RPE65 or Bestrophin). In accordance with one particular embodiment, the cells are a priori cultured with nicotinamide (NA) which was found to augment the cells' response to the inductive effect of the one or more member of the TGF? superfamily. The invention also provides methods of performing the directed differentiation, as well as methods for use of the resulting RPE cells.
    Type: Grant
    Filed: April 27, 2008
    Date of Patent: February 17, 2015
    Assignee: Hadasit Medical Research Services and Development Ltd.
    Inventors: Masha Idelson, Ruslana Alper-Pinus, Alex Obolensky, Eyal Banin, Benjamin Reubinoff
  • Patent number: 8951800
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 10, 2015
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
  • Patent number: 8945922
    Abstract: Provided are an iPS cell derived from a somatic cell such as an NKT cell, having the ?-chain region of the T cell antigen receptor gene rearranged to uniform V?-J? in an NKT cell receptor-specific way, NKT cells differentiated from the iPS cell, a method of creating the same, and an immune cell therapy agent prepared using cells differentiated from the iPS cell.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: February 3, 2015
    Assignee: Riken
    Inventors: Hiroshi Watarai, Haruhiko Koseki, Masaru Taniguchi, Shin-ichiro Fujii
  • Patent number: 8945925
    Abstract: The present invention is of methods of establishing and propagating human embryonic stem cell lines using feeder cells-free, xeno-free culture systems and stem cells which are capable of being maintained in an undifferentiated, pluripotent and proliferative state in culture which is free of xeno contaminants and feeder cells.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: February 3, 2015
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Michal Amit, Joseph Itskovitz-Eldor
  • Patent number: 8933295
    Abstract: The method of the invention is useful for evaluating pharmaceutical compositions for treatment of neurological diseases encompassing neurological or neurodegenerative diseases associated with cognitive dysfunction and, in particular, dementia; schizophrenia; anxiety; depression; and pain using a rodent behavioral assay, wherein the method is useful in testing compositions useful in the modulation, amelioration, prevention, or treatment of dementia using a non-human animal carrying at least a transgene for human amyloid-beta protein or human tau and transgenes causing the elevated production of the human amyloid-beta protein in the animal as compared to nontransgenic animals of the same genetic background and the behavior is a nesting behavior.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: January 13, 2015
    Assignee: Janssen Biotech, Inc.
    Inventors: Sun-Yung Jung, Mary Birchler
  • Patent number: 8932857
    Abstract: The present invention provides a method for selecting human induced pluripotent stem (iPS) cells which can be safely used for transplantation. That is, the present invention provides a method for selecting human iPS cells having reduced differentiation resistance, comprising the steps of: (1) inducing differentiation of human iPS cells; (2) detecting remaining undifferentiated cells after the step (1); and (3) selecting human iPS cells whose rate of remaining undifferentiated cells detected in step (2) is equivalent to or not more than that of control cells.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: January 13, 2015
    Assignee: Kyoto University
    Inventors: Shinya Yamanaka, Kazutoshi Takahashi, Mari Ohnuki
  • Patent number: 8916339
    Abstract: A composition of neural tissue is made of spinal cord tissue harvested from a spinal cord of a mammal. The spinal cord tissue is harvested from vertebral column of the mammal. The spinal cord tissue is harvested post mortem. The mammal is one of a primate, an equine, a bovine, a porcine or other mammalian animal. The spinal cord tissue is dried or has the water content in the tissue reduced or eliminated by freeze drying or hypothermic dehydration.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: December 23, 2014
    Assignee: Vivex Biomedical, Inc.
    Inventor: Theodore I. Malinin