Patents Examined by Eddie Lee
  • Patent number: 7023067
    Abstract: A bonding pad for an integrated circuit, where the bonding pad overlies a fragile dielectric layer. A lower metal layer stack overlies the fragile dielectric layer, and a hard dielectric layer overlies the lower metal layer stack. An upper metal layer stack overlies the hard dielectric layer, where the upper metal layer stack forms voids extending into the upper metal layer stack from an exposed upper surface of the upper metal layer stack. The voids define deformable protrusions in the upper surface of the upper metal layer stack, for at least partially absorbing forces applied to the bonding pad during a bonding operation. Electrically conductive vias extend from the lower metal layer stack through the hard dielectric layer to the upper metal layer stack, and electrically connect the lower metal layer stack to the upper metal layer stack.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: April 4, 2006
    Assignee: LSI Logic Corporation
    Inventors: Derryl D. J. Allman, Charles E. May
  • Patent number: 7015545
    Abstract: An RF MOS transistor having improved AC output conductance and AC output capacitance includes parallel interdigitated source and drain regions separated by channel regions and overlying gates. Grounded tap regions contacting an underlying well are placed contiguous to source regions and reduce distributed backgate resistance, lower backgate channel modulation, and lower output conductance.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: March 21, 2006
    Assignee: Broadcom Corporation
    Inventors: Thomas G. McKay, Stephen Allott
  • Patent number: 7012311
    Abstract: A semiconductor device includes a Si crystal having a crystal surface in the vicinity of a (111) surface, and an insulation film formed on said crystal surface, at least a part of said insulation film comprising a Si oxide film containing Kr or a Si nitride film containing Ar or Kr.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: March 14, 2006
    Assignees: Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Shigetoshi Sugawa, Katsuyuki Sekine, Yuji Saito
  • Patent number: 7002241
    Abstract: Packages of semiconductor devices with non-opaque covers and methods for making the packages. The invention allows an encapsulant to be used with a non-opaque cover. By ensuring the cover is attached to a die in such a way as to expose bonding pads while sealing in the imaging portion of the die, the die can be electrically connected to a substrate and then encapsulated. Since the imaging portion is sealed, the encapsulant cannot get underneath the glass. By ensuring the encapsulant is not filled beyond the glass, encapsulant cannot get over the glass either.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: February 21, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Shahram Mostafazadeh, Joseph O. Smith
  • Patent number: 6998639
    Abstract: A process for fabricating a highly stable and reliable semiconductor, comprising: coating the surface of an amorphous silicon film with a solution containing a catalyst element capable of accelerating the crystallization of the amorphous silicon film, and heat treating the amorphous silicon film thereafter to crystallize the film.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: February 14, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hisashi Ohtani, Akiharu Miyanaga, Takeshi Fukunaga, Hongyong Zhang
  • Patent number: 6998641
    Abstract: In order to solve the problem of inferior gettering efficiency in the n-channel TFT, the present invention provides at an end of the source/drain regions of the n-channel TFT a highly efficient gettering region that contains both of an n-type impurity and a p-type impurity with the concentration of the p-type impurity set higher than the concentration of the n-type impurity.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: February 14, 2006
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Naoki Makita, Misako Nakazawa, Hideto Ohnuma, Takuya Matsuo
  • Patent number: 6992385
    Abstract: A novel semiconductor device high in both heat dissipating property and connection reliability in mounting is to be provided. The semiconductor device comprises a semiconductor chip, a resin sealing member for sealing the semiconductor chip, a first conductive member connected to a first electrode formed on a first main surface of the semiconductor chip, and a second conductive member connected to a second electrode formed on a second main surface opposite to the first main surface of the semiconductor chip, the first conductive member being exposed from a first main surface of the resin sealing member, and the second conductive member being exposed from a second main surface opposite to the first main surface of the resin sealing member and also from side faces of the resin sealing member.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: January 31, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Yukihiro Satou, Takeshi Otani, Hiroyuki Takahashi, Toshiyuki Hata, Ichio Shimizu
  • Patent number: 6982229
    Abstract: An integrated circuit (IC) includes a CMOS device formed above a semiconductor substrate having ions therein that are implanted in the semiconductor substrate by an ion recoil procedure. The IC preferably, but not necessarily, incorporates sub-0.1 micron technology in the CMOS device. The implanted ions may preferably be germanium ions. A strained-silicon layer is preferably, but not necessarily, formed above the ion-implanted layer of the semiconductor substrate. The strained-silicon layer may be formed by a silicon epitaxial growth on the ion-implanted layer or by causing the ions to recoil into the semiconductor substrate with such energy that a region of the semiconductor substrate in the vicinity of the surface thereof is left substantially free of the ions, thereby forming a strained-silicon layer in the substantially ion-free region.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: January 3, 2006
    Assignee: LSI Logic Corporation
    Inventors: Agajan Suvkhanov, Mohammad R. Mirabedini
  • Patent number: 6972437
    Abstract: Disclosed is an AlGaInN LED with improved external quantum efficiency, in which a chip employing the LED has a horizontal plane formed in a lozenge shape so that the amount of total reflection of light is reduced when the light generated from an active layer interposed between hetero-semiconductor layers with different band gaps is emitted to the outside. Since the horizontal plane of the LED is formed to have a lozenge shape so that the amount of total reflection of light generated in the LED is reduced, it is possible to maximize external quantum efficiency determined by the degree of emission of the light generated in the active layer. The cleaved plane of the LED coincides with the crystal orientation of a wafer made of GaN or sapphire, thus improving the yield of the LED when the LED is cut and produced.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: December 6, 2005
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Chang-Tae Kim
  • Patent number: 6967402
    Abstract: This is a semiconductor power module provided with: a ceramic substrate; a metallic plate bonded to a surface of this substrate; a cylindrical metallic flange which is hermetically bonded to a surface of substrate or the metallic plate; a ceramic housing for hermetically sealing an opening of the metallic flange; and at least one or more semiconductor chips soldered to the metallic plate. The metallic flange is made of metal with a low thermal expansion coefficient. A hermetically sealed container is created by welding the metallic flange, the ceramic substrate and the housing with silver brazing. Moreover, external collector, emitter and gate electrodes are bonded on the housing by using the silver brazing. The collector, emitter and gate conductive pillars are respectively connected to the external collector, emitter and gate electrodes with calking. Thus, this hermetically sealed container is strong in mechanical strength and high in explosion-proof durability and excellent in moisture resistance.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: November 22, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Michiaki Hiyoshi
  • Patent number: 6965168
    Abstract: A hermetic multi-layered ceramic semiconductor package for micro-machined semiconductor devices. The package has a substrate with top and bottom surfaces. A micro-machined semiconductor device is located adjacent to the top surface. Vias extend through the substrate between the surfaces. The micro-machined semiconductor device is electrically connected to the vias. A rigid support is located between the micro-machined semiconductor device and the top surface to support the micro-machined semiconductor device during assembly and to space the micro-machined semiconductor device from the top surface. Solder spheres are mounted to the bottom surface and are connected to the vias.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: November 15, 2005
    Assignee: CTS Corporation
    Inventor: Jason Barnabas Langhorn
  • Patent number: 6964901
    Abstract: The invention includes methods of forming rugged electrically conductive surfaces. In one method, a layer is formed across a substrate and subsequently at least partially dissociated to form gaps extending to the substrate. An electrically conductive surface is formed to extend across the at least partially dissociated layer and within the gaps. The electrically conductive surface has a rugged topography imparted by the at least partially dissociated layer and the gaps. The topographically rugged surface can be incorporated into capacitor constructions. The capacitor constructions can be incorporated into DRAM cells, and such DRAM cells can be incorporated into electrical systems.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: November 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Marsela Pontoh, Cem Basceri, Thomas M. Graettinger
  • Patent number: 6958505
    Abstract: There is provided an integrated circuit having active components including junctions formed in a monocrystalline substrate doped locally, and at least one passive component situated above the active components. The integrated circuit includes a first insulating layer separating the active components and abase of the passive component, and a metal terminal for electrically connecting the passive component with at least one of the active components. The metal terminal is formed in the thickness of the first insulating layer and has a contact surface that projects from the limits of a junction of the one active component. In a preferred embodiment, the passive component is a capacitor. Also provided is a method of fabricating an integrated circuit that includes MOS transistors and an onboard memory plane of DRAM cells in a matrix.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: October 25, 2005
    Assignee: STMicroelectronics S.A.
    Inventors: Catherine Mallardeau, Pascale Mazoyer, Marc Piazza
  • Patent number: 6958496
    Abstract: This invention this invention provides a light-emitting semiconductor device having enhanced brightness, to ensure even current distribution emitted by a front contact of the light emitting diodes so as to improve the light-emitting efficiency of the active layer. This invention adopts the method to manufacture the light-emitting device, comprising the steps of: forming an active layer on a substrate; forming a capping layer on the active layer to enhance current distribution, where a back contact is located on another side of the substrate and a front contact is located above the capping layer. This invention is characterized by: re-designing the front contact, by reducing the width of a metallic pattern constructing fingers or Mesh lines and increasing the number of the fingers or Mesh lines, so as to resolve the current crowding problem.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: October 25, 2005
    Assignee: United Epitaxy Company, Ltd.
    Inventors: Wei-En Chien, Chih-Sung Chang, Chen Tzer-Perng
  • Patent number: 6953995
    Abstract: A fully hermetically sealed semiconductor chip and its method of manufacture. The semiconductor chip of the present invention is fully hermetically sealed on both sides and the edges thereof through the use of suitable coatings applied thereto, such as glass, to prevent an environmental attack of the semiconductor chip. The fully hermetically sealed semiconductor chip of the present invention does not require the use of a separate package for the hermetic sealing of the chip, thereby reducing the size of such a chip. The method of the manufacture of the semiconductor chip of the present invention provides a simple process for the fully hermetic sealing of both sides and the edges of the semiconductor chip without the use of a separate package.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: October 11, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Salman Akram, Alan G. Wood
  • Patent number: 6946696
    Abstract: A double-gate field effect transistor (DGFET) structure and method of forming such a structure in which the parasitic capacitance under the source/drain regions is substantially reduced are provided. Two new means to reduce the parasitic capacitance under the source/drain regions are provided. Firstly, the silicon area outside the gate is converted to oxide while protecting a silicon ledge adjacent to the gate with a first spacer. The oxidation can be facilitated using a self-aligned oxygen implant, or implant of some other species. Secondly, the first spacer is removed, replaced with a second spacer, and a new silicon source/drain area is grown by employing lateral selective epi overgrowth and using the now exposed silicon ledge as a seed, over the self-aligned oxide isolation region. This achieves a low-capacitance to the back-plane, while retaining control of the threshold voltages.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: September 20, 2005
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Guy M. Cohen, Meikei Ieong, Ronnen A. Roy, Paul Solomon, Min Yang
  • Patent number: 6943436
    Abstract: An integrated circuit package includes a lid with EMI containment features. The lid may include a plurality of projections adapted to couple a ground plane of a circuit board.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: September 13, 2005
    Assignee: Sun Microsystems, Inc.
    Inventors: Sergiu Radu, Steven R. Boyle
  • Patent number: 6939772
    Abstract: A SiGe spacer layer 151, a graded SiGe base layer 152 including boron, and an Si-cap layer 153 are sequentially grown through epitaxial growth over a collector layer 102 on an Si substrate. A second deposited oxide film 112 having a base opening portion 118 and a P+ polysilicon layer 115 that will be made into an emitter connecting electrode filling the base opening portion are formed on the Si-cap layer 153, and an emitter diffusion layer 153a is formed by diffusing phosphorus into the Si-cap layer 153. When the Si-cap layer 153 is grown, by allowing the Si-cap layer 153 to include boron only at the upper part thereof by in-situ doping, the width of a depletion layer 154 is narrowed and a recombination current is reduced, thereby making it possible to improve the linearity of the current characteristics.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: September 6, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akira Asai, Teruhito Ohnishi, Takeshi Takagi
  • Patent number: 6940177
    Abstract: A semiconductor package comprising a semiconductor wafer having an active surface comprising at least one integrated circuit, wherein each integrated circuit has a plurality of bond pads; and at least one cured silicone member covering at least a portion of the active surface, wherein at least a portion of each bond pad is not covered by the silicone member, the silicone member has a coefficient of linear thermal expansion of from 60 to 280 ?m/m° C. between ?40 and 150° C. and a modulus of from 1 to 300 MPa at 25° C., and the silicone member is prepared by the method of the invention.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: September 6, 2005
    Assignee: Dow Corning Corporation
    Inventors: Stanton James Dent, Lyndon James Larson, Robert Thomas Nelson, Debra Charilla Rash
  • Patent number: 6939799
    Abstract: A method of forming integrated circuitry includes forming a field effect transistor gate over a substrate. The gate comprises polysilicon conductively doped with a conductivity enhancing impurity of a first type and a conductive diffusion barrier layer to diffusion of first or second type conductivity enhancing impurity received thereover. An insulative layer is formed over the gate. An opening is formed into the insulative layer to a conductive portion of the gate. Semiconductive material conductively doped with a conductivity enhancing impurity of a second type is formed within the opening in electrical connection with the conductive portion, with the conductive diffusion barrier layer of the gate being received between the semiconductive material of the gate and the semiconductive material within the opening. Other aspects are disclosed and claimed.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: September 6, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Charles H. Dennison