Patents Examined by Eric Wong
  • Patent number: 10802228
    Abstract: Fiber optic connectors and connectorized fiber optic cables include connector housings having locking portions defined on the connector housing that allow the connector housing to be selectively coupled to a corresponding push-button securing member of a multiport assembly. Methods for selectively connecting a fiber optic connector to, and disconnecting the fiber optic connector from the multiport assemblies allow for connector housings to be forcibly and nondestructively removed from the multiport assembly.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: October 13, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Thierry Luc Alain Dannoux, Joel Christopher Rosson, Felice Scotta, Michael Wimmer, Zhiye Zhang
  • Patent number: 10802213
    Abstract: Described are various configurations of optical structures having asymmetric-width waveguides. A photodetector can include parallel waveguides that have different widths, which can be connected via passive waveguide. One or more light absorbing regions can be proximate to the waveguides to absorb light propagating through one or more of the parallel waveguides. Multiple photodetectors having asymmetric width waveguides can operate to transduce light in different modes in a polarization diversity optical receiver.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 13, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Jonathan Edgar Roth, Jared Bauters, Erik Johan Norberg
  • Patent number: 10795091
    Abstract: An example adaptor for passively aligning an optical component of an optical connector with a ferrule of the optical connector. The adaptor may include first alignment feature and second alignment features. The first alignment features may be to, when the adaptor is connected to the ferrule, cooperate with alignment features of the ferrule to passively force the adaptor into a first configuration relative to the ferrule. The second alignment features may be arranged such that, when the optical component is held in contact with the second alignment features and the adaptor is in the first configuration relative to the ferrule, the optical component is in an aligned position relative to the ferrule.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: October 6, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Paul Kessler Rosenberg, Sagi Mathai, Michael Tan
  • Patent number: 10795189
    Abstract: An electro-optical phase modulator includes a waveguide made from a stack of strips. The stack includes a first strip made of a doped semiconductor material of a first conductivity type, a second strip made of a conductive material or of a doped semiconductor material of a second conductivity type, and a third strip made of a doped semiconductor material of the first conductivity type. The second strip is separated from the first strip by a first interface layer made of a dielectric material, and the third strip is separated from the second strip by a second interface layer made of a dielectric material.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 6, 2020
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Stephane Monfray
  • Patent number: 10795188
    Abstract: An optical phase shifter includes, in part, a waveguide, a heating element adapted to heat the waveguide, and a cooling element adapted to cool the waveguide. The heating element may be integrated within a substrate in which the waveguide is formed. The cooling element is biased to maintain the temperature of the waveguide within a predefined range characterized by a substantially high gradient of the thermal constant of the waveguide. The optical phase shifter may optionally include a substrate on which the waveguide is positioned. The substrate may include, in part, through substrate vias for supplying electrical signals to the cooling element. A control circuit supplies electrical signals to the heating and cooling elements. The control circuit may maintain the cooling element and heating element on concurrently. Alternatively, the control circuit may turn off the cooling element before turning on the heating element.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: October 6, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Firooz Aflatouni, Seyed Ali Hajimiri
  • Patent number: 10782485
    Abstract: Hardened fiber optic connectors having a mechanical splice assembly are disclosed. The mechanical splice assembly is attached to a first end of an optical waveguide such as an optical fiber of a fiber optic cable by way of a stub optical fiber, thereby connectorizing the hardened connector. In one embodiment, the hardened connector includes an inner housing having two shells for securing a tensile element of the cable and securing the mechanical splice assembly so that a ferrule assembly may translate. Further assembly of the hardened connector has the inner housing fitting into a shroud of the hardened connector. The shroud aides in mating the hardened connector with a complimentary device and the shroud may have any suitable configuration. The hardened connector may also include features for fiber buckling, sealing, cable strain relief or a pre-assembly for ease of installation.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 22, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Michael de Jong, Wolf Peter Kluwe, Daniel Leyva, Jr., Min Tao
  • Patent number: 10761332
    Abstract: A light-guiding device according to an aspect of the invention includes an incident section configured to make light incident, a light guide configured to guide the light incident from the incident section, a bonding layer configured to bond the incident section and the light guide, and a reflection member provided on a side surface of the bonding layer.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: September 1, 2020
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Hayato Matsuki, Shohei Yoshida, Takashi Takeda
  • Patent number: 10754091
    Abstract: An coherent transceiver includes a single silicon photonics substrate configured to integrate a laser diode chip flip-mounted and coupled with a wavelength tuning section to provide a laser output with tuned wavelengths which is split in X:Y ratio partly into a coherent receiver block as local-oscillator signals and partly into a coherent transmitter block as a light source. The coherent receiver includes a polarization-beam-splitter-rotator to split a coherent input signal to a TE-mode signal and a TM*-mode signal respectively detected by two 90-deg hybrid receivers and a flip-mounted TIA chip assisted by two local-oscillator signals from the tunable laser device.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: August 25, 2020
    Assignee: INPHI CORPORATION
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 10754102
    Abstract: A fiber optic connector and cable assembly includes a cable and a fiber optic connector. The connector has a main connector body, a ferrule, a spring for biasing the ferrule, and a spring push for retaining the spring within the main connector body. A crimp band is provided for securing the fiber optic cable to the fiber optic connector. The crimp band includes a first portion securing a cable strength member. The crimp band also includes a second portion crimped down on a jacket of the cable. The crimp band further includes an inner surface having gripping structures for gripping the strength member and/or the jacket.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 25, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Steven C. Zimmel, Yu Lu, Patrick J. Nault, Scott C. Kowalczyk, Scott Droege, Brent Campbell, Christopher Stroth
  • Patent number: 10746935
    Abstract: An optical coupling apparatus comprising a substrate having a trench formed therein, the trench having a width measured between two opposing walls that define a portion of the trench; and a waveguide disposed on or in the substrate, the waveguide having a width that tapers along an axis of light propagation.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 18, 2020
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Michal Lipson, You-Chia Chang, Oscar Adrian Jimenez Gordillo, Mohammad Amin Tadayon, Brian Stern
  • Patent number: 10739622
    Abstract: Disclosed are structures as well as methods of manufacture and operation of integrated optoelectronic devices that facilitate directly heating the diode or waveguide structures to regulate a temperature of the device while allowing electrical contacts to be placed close to the device to reduce the electrical resistance. Embodiments include, in particular, heterogeneous electro-absorption modulators that include a compound-semiconductor diode structure placed above a waveguide formed in the device layer of an SOI substrate.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: August 11, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Jonathan Edgar Roth, Erik Johan Norberg
  • Patent number: 10732373
    Abstract: An optical fiber distribution system including a rack and elements which populate the rack including fiber terminations. Each element includes a chassis and a movable tray. The movable tray includes a synchronized movement device for moving a cable radius limiter. The tray includes cable terminations which extend in a line generally parallel to a direction of movement of the movable tray. Each of the cable terminations are mounted on hinged frame members positioned on each tray. The cables entering and exiting the movable tray follow a generally S-shaped pathway.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: August 4, 2020
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Johan Geens, Kristof Vastmans, Eric Marcel M. Keustermans, Pieter Vermeulen, Bart Vos, Dirk Jozef G. Van De Weyer, Lukas Desmond Elisas Van Campenhout, Yves Peeters, Matthias Cyriel George Corneel Alderweireldt
  • Patent number: 10732370
    Abstract: A cable distribution system is provided wherein a feeder cable with one or more feeder fibers is received by a distribution device or box. The feeder fibers are terminated to a fiber optic connector. Customers can directly connect to the connectors of the feeder cable through an adapter and a mating connector for a point-to-point connection. Alternatively, a splitter input can be connected to one or more of the connectors of the feeder cable, such as through a pigtail extending from the splitter, wherein the splitter splits the signal as desired into a plurality of outputs. The outputs of the splitters can be in the form of connectors or adapters. Customers can connect to the splitter outputs through a mating connector (and an adapter if needed).
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: August 4, 2020
    Assignees: CommScope Connectivity Belgium BVBA, ADC Czech Republic
    Inventors: David Jan Irma Van Baelen, Jiri Ambroz, Jiri Pasek, Jiri Zavrel, Roger Alaerts, Eric Schurmans, Denys Mizen, Stephane Collart
  • Patent number: 10718911
    Abstract: An optical connector holding two or more LC-type optical ferrules is provided. The optical connector includes an outer body, an inner front body accommodating the two or more LC-type optical ferrules, ferrule springs for urging the optical ferrules towards a mating receptacle, and a back body for supporting the ferrule springs. The outer body and the inner front body are configured such that four LC-type optical ferrules are accommodated in a small form-factor pluggable (SFP) transceiver footprint or eight LC-type optical ferrules are accommodated in a quad small form-factor pluggable (QSFP) transceiver footprint. A connector is released by pulling distally on boot assembly until receptacle hook is displaced from receptacle hook recess at a proximal end of connector.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: July 21, 2020
    Assignee: Senko Advanced Components, Inc.
    Inventors: Jimmy Jun-Fu Chang, Kazuyoshi Takano
  • Patent number: 10705300
    Abstract: An optical connector holding two or more LC-type optical ferrules is provided. The optical connector includes an outer body, an inner front body accommodating the two or more LC-type optical ferrules, ferrule springs for urging the optical ferrules towards a mating connection, and a back body for supporting the ferrule springs. A removable inner front body for polarity change is disclosed. A multi-purpose rotatable boot assembly for polarity change is disclosed. The multi-purpose boot assembly can be pushed and pulled to insert and remove the micro connector from an adapter receptacle.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: July 7, 2020
    Assignee: Senko Advanced Components, Inc.
    Inventors: Kazuyoshi Takano, Jimmy Jun-Fu Chang
  • Patent number: 10703282
    Abstract: An electro-optic element of a display of a vehicle includes a first substantially transparent substrate defining a first surface and a second surface. A first edge extends around the first substrate. A second substantially transparent substrate defines a third surface and a fourth surface. A second edge extends around the second substrate. A primary seal is disposed between the first and second substrates. The seal and the first and second substrates define a cavity therebetween. First and second electrical buses are positioned on the first edge and the second edge, respectively. A dual coated film is positioned between the first and second electrical buses. An electro-optic material is positioned within the cavity.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: July 7, 2020
    Assignee: GENTEX CORPORATION
    Inventors: Adam R. Heintzelman, Juan C. Lara, Christopher M. Derry, David J Cammenga
  • Patent number: 10698162
    Abstract: An optical device for polarizing light including a polarization altering element operatively coupled to a light path associated with the first light coupling device and the second light coupling device is described. The optical device may further include a first waveguide portion including a first layer having parallel plane surfaces with the first waveguide portion having a first light coupling device. The optical device may also include a second waveguide portion including a second layer having parallel plane surfaces with the second waveguide portion having a second light coupling device.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: June 30, 2020
    Assignee: Akonia Holographics LLC
    Inventors: Mark R. Ayres, Friso Schlottau, Adam Urness, Kenneth E. Anderson
  • Patent number: 10690854
    Abstract: An optical fiber device may include a unitary core including a primary section and a secondary section, wherein at least a portion of the secondary section is offset from a center of the unitary core, wherein the unitary core twists about an optical axis of the optical fiber device along a length of the optical fiber device, and wherein a refractive index of the primary section is greater than a refractive index of the secondary section; and a cladding surrounding the unitary core.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: June 23, 2020
    Assignee: Lumentum Operations LLC
    Inventors: Martin H. Muendel, James J. Morehead
  • Patent number: 10690846
    Abstract: A light projecting system comprises: a waveguide comprising a first surface, a second surface, and a fourth surface, at least one of the first surface or the second surface comprising a first plurality of grating structures; a light source coupling light into the waveguide to form an in-coupled light beam, wherein: each of the first grating structures is configured to disrupt the total internal reflection to cause at least a portion of the in-coupled light beam to couple out of the waveguide, and a remainder beam of the in-coupled light beam undergoing the total internal reflection being coupled out of the waveguide after the out-coupling at each of the first grating structures; a detector configured to receive and measure the remainder beam; and a processor coupled to the detector and configured to determine if a dangerous condition occurs based on the measured remainder beam.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: June 23, 2020
    Assignee: Shenzhen Guangjian Technology Co., Ltd.
    Inventors: Fanglu Lyu, Yi Rao
  • Patent number: 10690855
    Abstract: A device may splice, at a target splice point, a first end of a twisted fiber having a non-concentric core to an input end of a target fiber having a concentric core to form a spliced fiber wherein the concentric core of the target fiber and the non-concentric core of the twisted fiber have a particular offset at the target splice point. The device may taper at least a portion of the twisted fiber to form a tapered region of the spliced fiber and such that the particular offset at the target splice point corresponds to a pre-configured core offset wherein the target splice point is within the tapered region of the spliced fiber.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: June 23, 2020
    Assignee: Lumentum Operations LLC
    Inventors: Patrick Gregg, Richard D. Faulhaber, James J. Morehead, Vincent Petit, Martin H. Muendel