Patents Examined by Erin D. Chiem
  • Patent number: 11977281
    Abstract: A silicon on insulator (SOI) photonic device having a waveguide is provided that includes a mode overlap portion with a topology optimized structure situated below an electrode of the capacitance structure. The device can significantly change a refractive index in a volume of mode overlap depending upon the applied potential to the capacitor and allows for a ? phase shift in a modest mode overlap volume. The topology optimized structure has a waveguide and substrate that are partitioned in three dimensions using an extruded projection design. The electrode is a transition metal di-chalcogenide monolayer sheet (2D TMD). The enhanced mode overlay from the topology optimized waveguide portion allows a large reduction in the length of the waveguide with the mode overlap to achieve the needed phase shift for a photonic device.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: May 7, 2024
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Sean P. Rodrigues, Paul Donald Schmalenberg, Yuqing Zhou, Ercan Mehmet Dede
  • Patent number: 11977315
    Abstract: The positions at which electrode pads are arranged can be made more flexible, and electrical interconnects to be installed can be reduced. In addition, the degree of integration of a chip increases, making it possible to realize a large-scale device (optical switch etc.). In an optical module of the present invention, an interposer (an electrical connection intermediary component with electrode pins attached onto upper and lower faces in an array) is laid over a chip that includes a device configured by using a planar lightwave circuit (PLC) fixed onto a fixing metal plate, and a control substrate for driving the device is laid over the interposer. These components are mechanically fixed by a fixing screw or the like, and the electrode pads of the chip and the control substrate are connected to each other via the interposer.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: May 7, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Ai Yanagihara, Kenya Suzuki, Takashi Go, Keita Yamaguchi, Yuko Kawajiri
  • Patent number: 11977261
    Abstract: An optical connector assembly includes first and second optical ferrules. Each of the first and second optical ferrules includes a front portion extending forwardly from a rear portion. The rear portion includes a top side and a bottom side. The bottom side of the rear portion defines a recessed portion. The first and second optical ferrules mate with each other such that the front portion of each of the first and second ferrules is disposed in the recessed portion of the other one of the first and second ferrules. Discrete retainers are assembled to opposite ends of the mated first and second ferrules. Each of the retainers defines a resilient portion resiliently forcing the front portion of one of the first and second mated ferrules against the other one of the first and second optical ferrules.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: May 7, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Changbao Ma, Alexander W. Barr, Daniel F. Cronch
  • Patent number: 11971534
    Abstract: An optical transducer for endoscope includes an optical element, an optical fiber, and a ferrule, the ferrule including a semiconductor substrate and a glass substrate, in which: the semiconductor substrate has an insertion hole penetrating therethrough; an optical fiber is inserted into the insertion hole; the semiconductor substrate has a trench connected with the insertion hole and having an opening in a side surface; the trench has a convex on a bottom surface; and when a distal end surface of the optical fiber is observed from an opening of side surface of the tech, at least a part of the distal end surface is shielded by the convex.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: April 30, 2024
    Assignee: OLYMPUS CORPORATION
    Inventor: Yusuke Nakagawa
  • Patent number: 11966080
    Abstract: The present disclosure relates to an optical splice package for splicing together first and second optical fibers or first and second sets of optical fibers. The optical fibers have elastic bending characteristics. The splice package includes a splice housing including a mechanical alignment feature for co-axially aligning ends of the first and second optical fibers or sets of optical fibers within the splice housing. The splice housing contains adhesive for securing the ends of the first and second optical fibers or sets of optical fibers within the splice housing. The optical package has a weight less than a spring force corresponding to the elastic bending characteristics of the first and second optical fibers or sets of optical fibers.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: April 23, 2024
    Assignee: COMMSCOPE CONNECTIVITY BELGIUM BVBA
    Inventors: Stefano Beri, Danny Willy August Verheyden, Jan Watté, Roel Modest Willy Bryon, Kristof Vastmans, Johan Geens
  • Patent number: 11953721
    Abstract: A photonic system includes a waveguide. The photonic system further includes a micro ring modulator (MRM) spaced from the waveguide. The photonic system further includes a heater configured to increase a temperature of the MRM in response to the heater receiving a first voltage. The photonic system further includes a cooling element configured to decrease a temperature of the MRM in response to the cooling element receiving a second voltage.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lan-Chou Cho, Stefan Rusu
  • Patent number: 11935837
    Abstract: An integrated circuit package integrates a photonic die (oDie) and an electronic die (eDie). More specifically, the integrated circuit package may include a plurality of redistribution layers communicatively coupled to at least one of the oDie and/or the eDie, where molded material at least partially surrounds the at least one of the oDie and/or the eDie.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Feng Wei Kuo, Chewn-Pu Jou, Shuo-Mao Chen
  • Patent number: 11921364
    Abstract: A electronic method, includes receiving, by a graphene structure, a SPP mode of a particular frequency. The electronic method includes receiving, by the graphene structure, a driving microwave voltage. The electronic method includes generating, by the graphene structure, an entanglement between optical and voltage fields.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: March 5, 2024
    Assignee: ABU DHABI UNIVERSITY
    Inventors: Montasir Yousof Abdallah Qasymeh, Hichem El Euch
  • Patent number: 11921338
    Abstract: The present disclosure relates to a telecommunications distribution hub having a cabinet that defines a primary compartment. The cabinet also includes one or more main doors for accessing the primary compartment. Telecommunications equipment is mounted within the primary compartment. The distribution hub further includes a secondary compartment that can be accessed from an exterior of the cabinet without accessing the primary compartment. A grounding interface is accessible from within the secondary compartment.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: March 5, 2024
    Assignee: CommScope Technologies LLC
    Inventors: Edward T. Landry, Craig M. Standish, Steve Anderson, Joshua A. Zabel, Ronald A. Beck, Michael Kenneth Barth, Soutsada Vongseng, Matthew D. Ferris
  • Patent number: 11906787
    Abstract: The present invention provides an optical-electrical connector and an optical-electrical module thereof, wherein the optical-electrical module comprises the optical-electrical connector and an optical adapter, and the optical-electrical connector comprises an optical connector module, and an electrical connector module slidably coupled to the optical connector module, wherein when the optical-electrical connector is taken away from the an optical adapter by a pulling force, the electrical connector module is unlocked to slide out of the optical adapter earlier than the optical connector module, and the electrical connector module is driven to unlock the optical connector module to release from the optical adapter.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: February 20, 2024
    Assignees: ACSUPER TECHNOLOGIES INC., FIBERON TECHNOLOGIES INC.
    Inventors: Mei-Miao Liu, Kenichiro Nakamura
  • Patent number: 11886024
    Abstract: Methods and apparatus are provided for a monolithic multi-optical-waveguide penetrator or connector. One example apparatus generally includes a plurality of large diameter optical waveguides, each having a core and a cladding, and a body having a plurality of bores with the optical waveguides disposed therein, wherein at least a portion of the cladding of each of the optical waveguides is fused with the body, such that the apparatus is a monolithic structure. Such an apparatus provides for a cost- and space-efficient technique for feedthrough of multiple optical waveguides. Also, the body may have a large outer diameter which can be shaped into features of interest, such as connection alignment or feedthrough sealing features.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: January 30, 2024
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventor: Thomas W. F. Engel
  • Patent number: 11886009
    Abstract: The present disclosure relates to a polymeric overcoating used as a splice protector, and a corresponding method of application where the resulting coated fusion spliced optical fibers or coated fusion spliced optical fiber ribbons can be bundled or stacked to reduce the size of splice protection.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Corning Research & Development Corporation
    Inventors: Anil Bastola, Wei Liu, Randy LaRue McClure, Chad Charles Terwilliger, Elizabeth Tran, Chanh Cuong Vo, Qi Wu
  • Patent number: 11880077
    Abstract: An optical connector assembly (OCA) includes a connector housing to maintain alignment between optical components housed within the OCA and photoelectric converters on an optoelectronic substrate (OES) assembly. The optical components include a ferrule and an optical cable. The ferrule is optically coupled to the optical cable. The OCA includes a ferrule holder to hold the ferrule within the OCA, and a spring located between the connector housing and the ferrule holder. The spring is to apply a separating force between the ferrule holder and the connector housing. The OCA includes a gasket coupled to the connector housing. The coupling of the connector housing to a socket compresses the gasket to provide a seal between the connector housing and the socket.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: January 23, 2024
    Assignees: US Conec Ltd., Hewlett Packard Enterprise Development LP
    Inventors: Paul Kessler Rosenberg, George Panotopoulos, Kent Devenport, Darrell R. Childers, Daniel D. Kurtz, Cecil D. Hastings, Jr.
  • Patent number: 11874495
    Abstract: A monolithic InP-based PIC having a first photonic assembly that has a first optical splitter-combiner unit having a first end part that is optically connected with a first optical waveguide and a second end part that is optically connected with a first main photonic circuit and a first auxiliary photonic circuit. The first auxiliary photonic circuit has a first laser unit, and a first SOA. The first SOA is configurable to be in a first operational state in which the first SOA allows optical communication between the first laser unit and the first optical splitter-combiner unit, or a second operational state in which the first SOA prevents optical communication between the first laser unit and the first optical splitter-combiner unit. An opto-electronic system including the PIC.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: January 16, 2024
    Assignee: EFFECT PHOTONICS B.V.
    Inventors: Tim Koene, Niall Patrick Kelly
  • Patent number: 11874499
    Abstract: A reinforcement sleeve is a member for reinforcing a connection part of an optical fiber tape core wire, and comprises a heat-shrinkable tube, a heat-meltable member, a tension member, and the like. The heat-shrinkable tube is a cylindrical member. The tension member is a rod-shaped member. The tension member and the heat-meltable member are inserted in the heat-shrinkable tube. The heat-meltable member is disposed above the tension member. The tension member is approximately circular or approximately elliptical in a cross section perpendicular to the longitudinal direction of the reinforcement sleeve. More specifically, the surface on the heat-meltable member side of the tension member is formed to have an arc-shaped convex curved surface in a cross section perpendicular to the longitudinal direction of the tension member.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: January 16, 2024
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventor: Tomohiro Akiyama
  • Patent number: 11867871
    Abstract: An optical connector including a ferrule, an outer housing, and a latch is disclosed. The ferrule holds an optical fiber at a front end of the optical connector. The outer housing is located closer to a rear end of the optical connector than the ferrule. The latch is connected to the outer housing and extends from a proximal end toward the front end of the optical connector. The latch includes an engaging part to engage with an external device at a distal end thereof. The latch is configured such that the engaging part is pushed down toward the ferrule. The engaging part includes an engaging main body and an engaging protrusion protruding outwardly from the engaging main body. The engaging protrusion includes an engaging surface to engage with the external device at a rear of the engaging protrusion, and an edge of the engaging surface is chamfered.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: January 9, 2024
    Assignee: SUMITOMO ELECTRIC OPTIFRONTIER CO., LTD.
    Inventors: Takahiro Inaba, Yoshikyo Tamekuni, Yoshihiro Takeyama, Mitsumasa Seita
  • Patent number: 11860409
    Abstract: A display may have an array of display pixels that generate an image. A coherent fiber bundle may be mounted on the display pixels. The coherent fiber bundle may have a first surface that is adjacent to the display pixels and a second surface that is visible to a viewer. The coherent fiber bundle may contain fibers that carry light from the first surface to the second surface. The second surface may be planar or may have a central planar region and curved edge regions that run along opposing sides of the central planar region. The fibers may have cross-sectional surface areas with a first aspect ratio on the first surface and a second aspect ratio that is greater than the first aspect ratio on the second surface.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: January 2, 2024
    Assignee: Apple Inc.
    Inventors: Tseng-Mau Yang, Christopher D. Prest, Dale N. Memering
  • Patent number: 11860430
    Abstract: A fiber optic cable includes a cable core of core elements and a protective sheath surrounding the core elements, an armor surrounding the cable core, the armor comprising a single overlap portion when the fiber optic cable is viewed in cross-section, and a jacket surrounding the armor, the jacket having at least two longitudinal discontinuities extruded therein. A method of accessing the cable core without the use of ripcords includes removing a portion of the armor in an access section by pulling the armor away from the cable core so that an overlap portion separates around the cable core as it is being pulled past the cable core. A protective sheath protects the core elements as the armor is being pulled around the cable core.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: January 2, 2024
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Rodney Maurice Burns, James Garrett Dewell, Julian Latelle Greenwood, III, Keith Aaron Greer, Warren Welborn McAlpine
  • Patent number: 11860411
    Abstract: A super-compact arrayed waveguide grating (AWG) wavelength division multiplexer based on a sub-wavelength grating is provided and includes an input waveguide, a first planar waveguide, an arrayed waveguide, a second planar waveguide, and the output waveguide that are sequentially connected. The input waveguide has 1 port, and the output waveguide has 8 ports. The arrayed waveguide includes 50 equivalent uniform strip waveguides with the same length difference, and each of the equivalent uniform strip waveguides is configured as a sub-wavelength grating structure, thereby forming the effect of increasing group refractive index or transmission delay based on a slow light effect. The 8 channels with a channel spacing of 200 GHz have the minimum adjacent channel crosstalk of less than ?27 dB, and the overall size is within 300×230 ?m2. In the multiplexer, the overall integration size of the device is reduced by an order of magnitude.
    Type: Grant
    Filed: November 4, 2022
    Date of Patent: January 2, 2024
    Assignee: Southwest Jiaotong University
    Inventors: Xihua Zou, Changjian Xie, Xiaojun Xie, Wei Pan, Lianshan Yan
  • Patent number: 11841537
    Abstract: The present invention provides a dust-proof adapter comprising an adapter body, a flexible element, and a cap, wherein the adapter body has an opening at a coupling side and a ring-shaped surface surrounding the first opening, the flexible element is arranged onto the ring-shaped surface, and the cap detachably covers the adapter body for protecting the first opening. When the cap is covered on the first opening, the cap applies an action force along an axial direction of the adapter body on the flexible element thereby achieving air-tight and dust-proof effect.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: December 12, 2023
    Assignee: ACSUPER TECHNOLOGIES INC.
    Inventor: Chung-Ming Tseng