Patents Examined by Farouk A Bruce
  • Patent number: 11583251
    Abstract: An ultrasound imaging probe (204) includes a transducer array (210). The transducer array includes one or more transducer elements (212). The ultrasound imaging probe further includes an illumination component (218) and an optical imaging component (220). The ultrasound imaging probe further includes an elongated housing (302) with a long axis (304). The elongated housing includes a proximal end region (306) affixed to a handle (308) and a distal end region (310) with a tip region (312). The elongated housing houses the transducer array, the illumination component, and the optical imaging component in the distal end region.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: February 21, 2023
    Assignee: BK MEDICAL APS
    Inventors: Marianne Andersen, Terry A. Kling, Henrik Jensen, Johannes Paede
  • Patent number: 11534127
    Abstract: A system and method for analyzing images to optimize orthopedic functionality at a site within a patient, including obtaining at least a first, reference image of the site, or a corresponding contralateral site, the first image including at least a first anatomical region or a corresponding anatomical region. At least a second, intra-operative results image of the site is obtained. At least one point is selected to serve as a reference for both images during analysis including at least one of scaling, calculations, and image comparisons.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: December 27, 2022
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Noah D. Wollowick, Andrew J. Cooper, Xiu Jiang, Cameron Albert
  • Patent number: 11464413
    Abstract: One aspect of the present subject matter provides an imaging method including: receiving a trigger signal; after a period substantially equal to a trigger delay minus an inversion delay, applying a non-selective inversion radiofrequency pulse to a region of interest followed by a slice-selective reinversion radiofrequency pulse to a slice of the region of interest of a subject; and after lapse of the trigger delay commenced at the cardiac cycle signal, acquiring a plurality of time-resolved images of the slice of the region of interest from an imaging device.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: October 11, 2022
    Assignee: The United States of America as represented by Secretary, Department of Health and Human Services
    Inventors: Khaled Z. Abd-Elmoniem, Ahmed M. Gharib, Roderic I. Pettigrew
  • Patent number: 11407008
    Abstract: The present invention relates to an ultrasound transducer assembly (10), in particular for intra vascular ultrasound systems. The assembly (10) comprises a transducer array (12) including a plurality of transducer elements (14) for transmitting and receiving ultrasound waves. Two support elements (16, 18) are provided for supporting the transducer array (12) in a curved or polygonal shape. The support elements (16, 18) are connected via a flexible connection layer (20) to the transducer array (12) for flexibly connecting the support elements (16, 18) to the transducer array (12).
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: August 9, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ronald Dekker, Vincent Adrianus Henneken
  • Patent number: 11357480
    Abstract: A quantitative shear wave elasticity imaging method and system relates to the technical field of medical ultrasound imaging. The provided ultrasound quantitative elasticity imaging method and system are based on a sliding window linear fitting strain and use a two-dimensional linear fitting shear wave velocity detection algorithm, and thus, the anti-noise capability is stronger, and the result is more reliable. Moreover, where the load of an ultrasonic front-end storage and transmission module is not additionally in-creased, global ultrasonic quantitative elasticity imaging is realized, thereby significantly reducing the design difficulty of the ultrasound quantitative elasticity imaging system and the device cost.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: June 14, 2022
    Assignee: Saset Chengdu Technology Ltd.
    Inventors: Hao Yin, Dan Shi, Xiyao Liu, Dongquan Liu
  • Patent number: 11350826
    Abstract: A device for acquisition of medical images of an ulcer includes a plurality of light sources arranged on the perimeter of a closed regular plane geometry, and adapted to illuminate an ulcer by respective light beams covering the surface of the wound in an overlapped fashion; an image acquisition device placed within the perimeter of the light sources and adapted to acquire medical images of said illuminated ulcer.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: June 7, 2022
    Assignee: Politecnico Di Torino
    Inventors: Jacopo Secco, Orlando Selenu, Marco Farina
  • Patent number: 11344283
    Abstract: Synthetic-aperture ultrasound tomography systems and methods using scanning arrays and algorithms configured to simultaneously acquire ultrasound transmission and reflection data, and process the data for improved ultrasound tomography imaging, wherein the tomography imaging comprises total-variation regularization, or a modified total variation regularization, particularly with edge-guided or spatially variant regularization.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: May 31, 2022
    Assignee: TRIAD NATIONAL SECURITY, LLC
    Inventors: Lianjie Huang, Youzuo Lin
  • Patent number: 11293963
    Abstract: One example discloses a device for electromagnetic structural characterization, including: a controller having an electromagnetic transmitter output and a communications interface; wherein the controller is configured to send a signal over the electromagnetic transmitter output that causes an electromagnetic transmitter to generate a first electrical field (E1) and a first magnetic field (H1); wherein the controller configured to receive over the communications interface a second electric field (E2) and a second magnetic field (H2) received by an electromagnetic receiver; wherein the first electrical field and the first magnetic field correspond to when the electromagnetic transmitter is at a first location proximate to a structure and the second electrical field and the second magnetic field correspond to when the electromagnetic receiver is at a second location proximate to the structure; and wherein the controller is configured to calculate an impedance based on the electric and magnetic fields interacting
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: April 5, 2022
    Assignee: NXP B.V.
    Inventors: Anthony Kerselaers, Axel Nackaerts
  • Patent number: 11284964
    Abstract: The invention relates to a medical navigation marker device (1; 2; 3) comprising a light reflector, characterised in that the reflector features a marker pattern (11, 12, 13; 11, 12, 13, 14, 15, 16; 27, 28; 34, 37; 35, 37) having the following features:—the marker pattern (11, 12, 13; 11, 12, 13, 14, 15, 16; 27, 28; 34, 37; 35, 37) points in more than one spatial direction; —the marker pattern (11, 12, 13; 11, 12, 13, 14, 15, 16; 27, 28; 34, 37; 35, 37) comprises at least one moire pattern (11, 12, 13; 27; 37) which points in more than one spatial direction; and—the marker pattern (11, 12, 13; 11, 12, 13, 14, 15, 16; 27, 28; 34, 37; 35, 37) comprises a face identification pattern (14, 15, 16; 25, 26; 34; 35) which identifies the face of the marker being viewed from a particular spatial direction.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: March 29, 2022
    Assignee: Brainlab AG
    Inventors: Wolfgang Steinle, Timo Neubauer, Ingmar Hook
  • Patent number: 11266326
    Abstract: Systems and methods for manufacturing and using magnetic resonance (“MR”) visible labels or markers to encode information unique to the subject or object being imaged by a magnetic resonance imaging (“MRI”) system are provided. The use of such MR-visible labels or markers enables unique information associated with the subject or object being imaged to be encoded into the images of the subject or object. This information can be used to anonymize protected health information (“PHI”); to provide detailed information about a surgical simulation device, quality assurance phantom, or the like; to provide spatial orientation and registration information; or so on.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: March 8, 2022
    Assignee: SYNAPTIVE MEDICAL INC.
    Inventors: Kelly Noel Dyer, Jeff Alan Stainsby, Fergal Kerins
  • Patent number: 11253191
    Abstract: The invention provides a skin detection device using different detecting lights, such as white light or UV light. When white light is used, the user's original skin image is acquired, and further analyzed to determine the user's skin condition, such as pore size or dullness of spots. When UV light is used, it is determined whether there is metal remnant or acne on the user's skin. By using the skin detection device, various user skin conditions can be found to help the following cosmetic consultation.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: February 22, 2022
    Assignee: LI-TEK TECHNOLOGY CO., LTD.
    Inventors: Chih-Ming Tseng, Tai-Wei Su
  • Patent number: 11234678
    Abstract: Ultrasound tomography imaging methods for imaging a tissue medium with one or more ultrasound transducer arrays comprising a plurality of transducers, wherein said transducers comprise source transducers, receiving transducers. The methods include assigning a phase value or time delay to source transducers, exciting the transducers and calculating a search direction based on data relating to the excited transducers.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: February 1, 2022
    Assignee: TRIAD NATIONAL SECURITY, LLC
    Inventors: Lianjie Huang, Zhigang Zhang
  • Patent number: 11229362
    Abstract: A method of imaging nervous tissue, comprising acquiring functional imaging modality data from a functional imaging modality which images an intrabody volume of a patient having a body part, the patient having been injected with an imaging agent having a nervous tissue uptake by an autonomic nervous system (ANS); and locating the nervous tissue in the intrabody volume based on the functional imaging modality data.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: January 25, 2022
    Assignee: Tylerton International Holdings Inc.
    Inventor: Shlomo Ben-Haim
  • Patent number: 11224395
    Abstract: A medical imaging system with a screen, an X-ray imaging device having an X-ray interface and an intravascular data acquisition device having an intravascular interface provide enhanced X-ray images. For this purpose, the medical imaging system is adapted for overlaying an information set provided at the intravascular interface onto an X-ray image provided at the X-ray interface on user request for generating an enhanced X-ray image and for displaying the enhanced X-ray image on the screen.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 18, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Melike Bozkaya, Cherif Sahyoun, Fransciscus Joannes Leonardus Everaerts, Bram Antonius Philomena Van Rens
  • Patent number: 11219428
    Abstract: A wearable electronic device configured to be worn by a user while performing an invasive procedure for enhancing visualization of desired anatomical structures is provided. The wearable electronic device includes: a housing; at least one imaging sensor associated with the housing; and a visual display integrally formed with or associated with the housing. The device is configured to acquire an image of an invasive access site of a patient with the at least one imaging sensor, process the image to determine a location of a desired anatomical structure, and display a virtual trace of the location to the user via the visual display.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: January 11, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Jonathan Karl Burkholz, Jeff O'Bryan, Siddarth K. Shevgoor, Yiping Ma
  • Patent number: 11154279
    Abstract: Circuitry for ultrasound devices is described. A multi-level pulser is described, which can support time-domain and spatial apodization. The multi-level pulser may be controlled through a software-defined waveform generator. In response to the execution of a computer code, the waveform generator may access master segments from a memory, and generate a stream of packets directed to pulsing circuits. The stream of packets may be serialized. A plurality of decoding circuits may modulate the streams of packets to obtain spatial apodization.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 26, 2021
    Assignee: BFLY Operations, Inc.
    Inventors: Liewei Bao, Kailiang Chen, Tyler S. Ralston, Nevada J. Sanchez
  • Patent number: 11064904
    Abstract: The present invention provides a MEMS sensor guidance system mounted on a surgical instrument and uses the MEMS sensor to determine Inertial Measurement Units to track rotation and acceleration in all three spatial directions. Further the invention provides a method of surgery in which a reference axis, a loci, and a depth are defined and the instrument including the sensor cluster of the invention is placed in relation to the y-axis and x-axis and following the working end is aligned and the orientation and depth data display is observed to aid in maintaining the desired instrument.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 20, 2021
    Assignee: EXTREMITY DEVELOPMENT COMPANY, LLC
    Inventors: David B. Kay, Ian P. Kay, Dustin Ducharme
  • Patent number: 11058357
    Abstract: An acoustic wave apparatus is used, the apparatus comprising: a supporting member supporting an examinee and having insertion opening; a subject holding member holding the subject; a transducer array including transducers and being distant from the subject holding member; a load acquiring unit acquiring a load value applied between the supporting member and the subject holding member based on an amount of deformation of the subject holding member; a memory unit storing a first load reference value determined based on the amount of deformation of the subject holding member and an area applied with the load when the subject holding member and the transducer array come into contact with each other; a comparing and determining; and an interlock controlling unit.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: July 13, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Shinji Ohishi
  • Patent number: 10939822
    Abstract: A method of guiding a cardiac treatment using a functional imaging modality, comprising: providing functional imaging modality data from a functional imaging modality which images an intrabody volume of a patient containing a heart, the patient having been injected with an imaging agent having a nervous tissue uptake by an autonomic nervous system (ANS) of the heart, the ANS comprising at least one GP; locating the at least one GP innervating the heart based on the functional imaging modality data; and providing the located at least one GP.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: March 9, 2021
    Assignee: Tylerton International Holdings Inc.
    Inventors: Shlomo Ben-Haim, Yoel Zilberstien, Nathaniel Roth
  • Patent number: 10925474
    Abstract: The present disclosure is a device and method associated with the delivery of medical devices in the pericardial space using a minimally invasive approach with direct visualization. More specifically, the device can be used to deliver permanent pacing, defibrillation and cardiac resynchronization leads, as well as leadless pacemakers for cardiac rhythm management to the epicardial surface of the heart. A subxiphoid procedure is proposed as a minimally invasive alternative to thoracotomy, while the delivery tool incorporates a camera for direct visualization of the procedure. The tool also incorporates a steerable catheter to provide selective control of the placement and orientation of the medical device in the pericardial space.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: February 23, 2021
    Assignee: CHILDREN'S NATIONAL MEDICAL CENTER
    Inventors: Charles Berul, Justin Opfermann, Axel Krieger, Peter Kim, Tanya Davis, Bradley Clark