Patents Examined by Frederick Parker
  • Patent number: 8728572
    Abstract: A device and method relating to a layer system is provided. A substrate with a multi-layer system disposed on the substrate is provided. The multi-layer system has at least one upper layer and at least one layer. A contact element is applied through cold-gas spraying in such a manner that the contact element penetrates the upper layer and contacts the lower layer. The upper layer of the multi-layer system has a scratch-resistant top-layer.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: May 20, 2014
    Assignees: Interpane Entwicklungs-und Beratungsgesellschaft mbH, GFE Fremat GmbH
    Inventors: Harry Berek, Alexander Paul, Steffen Schmidt, Lothar Herlitze, Hansjoerg Weis, Karl Haeuser
  • Patent number: 8722140
    Abstract: A process for preparing roofing granules includes forming kaolin clay into green granules and sintering the green granules at a temperature of at least 900 degrees Celsius to cure the green granules until the crystalline content of the sintered granules is at least ten percent as determined by x-ray diffraction.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: May 13, 2014
    Assignee: CertainTeed Corporation
    Inventors: Ming Liang Shiao, Tihana Fuss, Husnu M. Kalkanoglu, Walter T. Stephens
  • Patent number: 8715780
    Abstract: Method for producing a plastic layer having a layer thickness of less than 200 ?m on an upper side of a substrate includes the following steps: applying plastic powder to the substrate upper side by means of a powder scattering device, then cleaning the substrate underside, then melting the applied plastic powder in a furnace, as a result of which the plastic layer is formed on the substrate, and cooling the substrate, wherein the substrate is transported continuously from method step to method step.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: May 6, 2014
    Assignee: Atotech Deutschland GmbH
    Inventors: Alex Bruderer, Jurgen Herbert, Max Hunziker, Michel Probst
  • Patent number: 8715787
    Abstract: The invention relates to application of enamel layers in the form of powder in an electric field and subsequent firing. A cleaned surface of a steel product is covered with a ground coat enamel layer in the form of powder in the electric field by an application gun until the layer reaches a thickness of 100 to 150 ?m. Subsequently, the electric field is interrupted in order to reduce a space charge around the metal product and, in the same manner, a minimum of another two layers of cover coat enamel powder is applied until a thickness of the total enamel powder layer reaches a minimum of 750 ?m, wherein the electric field is interrupted each time between each steps of cover coat enamel powder application.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: May 6, 2014
    Inventors: Alfonz Morav{hacek over (c)}ík, Martin Morav{hacek over (c)}ík
  • Patent number: 8715770
    Abstract: A device for coating dry powder microparticles onto a surface may include a jet mill configured to mill dry powder particles into microparticles having a desired aerodynamic diameter and to deaggregate the microparticles, a feed hopper structured and arranged to feed dry powder particles to the jet mill, a surface configured to receive dry powder microparticles and an exit nozzle associated with the jet mill. The exit nozzle may be arranged to direct deaggregated micronized dry powder particles from the jet mill to the surface to be coated. The device may further include a holder structured and arranged to hold an item, wherein the item includes the surface. In some aspects of the device, the item may be a film.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: May 6, 2014
    Assignee: STC.UNM
    Inventors: Parthiban Selvam, Hugh D. C. Smyth, Martin Donovan
  • Patent number: 8703234
    Abstract: Methods of coating a magnesium substrate are provided along with coated magnesium substrates. A low melting point material is cold sprayed onto a region of the magnesium substrate. A corrosion resistant material or a zinc material is cold sprayed over at least a portion of the low melting point material to form a coated magnesium substrate. The coated magnesium substrate is then heated.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Guangling Song
  • Patent number: 8703233
    Abstract: In various embodiments, a joined sputtering target is formed by filling at least a portion of a gap between two discrete sputtering-target tiles with a gap-fill material, spray-depositing a spray material to form a partial joint, removing at least a portion of the gap-fill material, and, thereafter, spray-depositing the spray material to join the tiles.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 22, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Francois-Charles Dary, Mark Gaydos, Gary Rozak
  • Patent number: 8697184
    Abstract: The present invention relates to a method for producing a coating on a gas turbine component, in which particles at least of parts of a material to be applied as coating are accelerated by means of kinetic gas dynamic cold spraying in a spray jet onto the surface (2) of the component (1) to be coated, wherein a reactive gas is fed into the spray jet (6), so that the reactive gas reacts at least partially with the particles of the coating material when the particles impinge on the surface (2) to be coated and/or wherein the deposited layer (9) is heated locally and/or over a large area and impacted with a reactive gas, as well as a gas turbine component produced in this way.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: April 15, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Manuel Hertter, Andreas Jakimov, Stefan Schneiderbanger
  • Patent number: 8691334
    Abstract: Provided is a method of fabricating a substrate where patterns are formed, the method including: forming first bonding agent patterns having selective cohesion in a position in which oxide bead patterns are to be formed on a substrate; coating a second bonding agent having larger cohesion with the first bonding agent than cohesion with the substrate, on a plurality of oxide beads, applying the oxide beads, on which the second bonding agent is coated, to the substrate and forming the oxide beads, on which the second bonding agent is coated, on the first bonding agent patterns; and thermally processing the substrate.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: April 8, 2014
    Assignee: SK Hynix Inc.
    Inventors: Euijoon Yoon, Sung-Hoon Kwon
  • Patent number: 8691335
    Abstract: Technologies are generally described for a system and process effective to coat a substance with graphene. A system may include a first container including graphene oxide and water and a second container including a reducing agent and the substance. A third container may be operative relationship with the first container and the second container. A processor may be in communication with the first, second and third containers. The processor may be configured to control the third container to receive the graphene oxide and water from the first container and to control the third container to receive the reducing agent and the substance from the second container. The processor may be configured to control the third container to mix the graphene oxide, water, reducing agent, and substance under sufficient reaction conditions to produce sufficient graphene to coat the substance with graphene to produce a graphene coated substance.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: April 8, 2014
    Assignee: Empire Technology Development, LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8679580
    Abstract: A coated substrate and methods for making the coated substrate are disclosed. The method entails depositing an undercoating over at least a portion of the substrate; fluidizing a precursor for nanoparticles; and forcing the fluidized precursor toward the substrate to coat the undercoating with a layer of nanoparticles. Coated substrates according to the present invention exhibit improved durability and increased photocatalytic activity.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: March 25, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Songwei Lu, Cheri M. Boykin, Caroline S. Harris
  • Patent number: 8673403
    Abstract: Provided is a method of forming a fine pattern of a polymer thin film using a phenomenon that another material having a large difference in surface energy in comparison with a polymer thin film pattern is dewetted on the polymer thin film pattern. Two polymer materials having a large difference in surface energy can be applied to readily and conveniently form a fine pattern of a polymer thin film of micrometer or sub-micrometer grade.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: March 18, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seong Hyun Kim, Sang Chul Lim, Yong Suk Yang, Zin Sig Kim, Doo Hyeb Youn
  • Patent number: 8663747
    Abstract: A process for manufacturing a coated panel. The process can comprise providing a panel of a desired dimension or cutting a panel to a desired dimension. In some embodiments a panel can be provided with joining functionality. A surface of the panel can be coated with a powder and the powder cured to thereby treat a surface of the panel.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: March 4, 2014
    Assignee: Pergo (Europe) AB
    Inventors: Magnus Quist, Peter Miller, Jan Ericsson
  • Patent number: 8663732
    Abstract: Light scattering inorganic substrates comprising monolayers and methods for making light scattering inorganic substrates comprising monolayers useful for, for example, photovoltaic cells are described herein. The method comprises providing an inorganic substrate comprising at least one surface, applying an adhesive to the at least one surface of the inorganic substrate, applying inorganic particles to the adhesive to form a coated substrate, and heating the coated substrate to form the light scattering inorganic substrate.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: March 4, 2014
    Assignee: Corsam Technologies LLC
    Inventor: Glenn Eric Kohnke
  • Patent number: 8658256
    Abstract: Methods include applying an electric charge to a coating material that includes carbon nanotubes and a carrier, such as paint, and depositing the electrically charged coating material to a substrate. In some methods, the applying includes utilizing an electrostatic sprayer. In some methods, the substrate is isolated from ground during the depositing. In some methods, the substrate is an insulator. Some methods result in regions of carbon nanotubes that are substantially longitudinally aligned after the depositing. Coated substrates may include a coating with carbon nanotubes that are substantially longitudinally aligned. Aircraft, spacecraft, land vehicles, marine vehicles, wind turbines, and apparatuses that may be susceptible to lightning strikes or other types of electromagnetic effects and that include a coated substrate also are disclosed.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: February 25, 2014
    Assignee: The Boeing Company
    Inventors: Shahnaz Shokri, Quynhgiao N. Le, Christopher Broadbent, Alexandra Elena Corona, Terrell Diane Riley
  • Patent number: 8652572
    Abstract: A method is provided for producing a particulate filter to pass through select permeate particles in a fluid medium from inflow to outflow regions while restraining reticulate particles. The method includes providing an aluminum oxide substrate; disposing a sol-gel membrane onto the substrate to form a tiered filtration unit; drying the filtration unit; and calcinating the filtration unit.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: February 18, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Nicholas V. Nechitailo
  • Patent number: 8652576
    Abstract: A method and a system is provided to form deletion windows on a glass substrate. The method includes the steps of applying a provisional masking substance of the glass substrate for masking predetermined regions of said glass substrate. The method also includes applying a reflective material on the glass substrate including the provisional masking substance. The method further includes applying heat to the glass substrate for removing the provisional masking substance of the glass substrate forming the deletion windows.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: February 18, 2014
    Assignee: Vidrio Plano de Mexico, S.A. de C.V.
    Inventors: Alberto Hernandez Delsol, Jesús Alberto Gonzalez Rodriguez, Miguel Arroyo Ortega
  • Patent number: 8652581
    Abstract: An apparatus for mixing a first material with a second material and then spraying the resultant material onto a surface. The second material is mixed with a gas before the being introduced to the first material. A static charge is created and deposited onto the resultant material to help align the resultant material particles.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: February 18, 2014
    Inventor: Matthew Merchant
  • Patent number: 8647712
    Abstract: The present teachings describe a process that includes obtaining a composition of particles comprising fluorine containing particles and aerogel particles. The composition is mixed at a resonant frequency of a mixing system containing the composition. The composition is powder coated onto a substrate and cured to form a release layer on the substrate.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: February 11, 2014
    Assignee: Xerox Corporation
    Inventors: Carolyn P. Moorlag, Qi Zhang, Suxia Yang, Yu Qi, Brynn M. Dooley, Sandra J. Gardner
  • Patent number: 8632852
    Abstract: A method of producing a honeycomb filter using a production apparatus that includes: a workpiece securing section for securing a base of a honeycomb filter; a powder transfer section for transferring a powder together with a pressurized gas (e.g., air); an introduction section for introducing the powder that has transferred from the powder transfer section into the base secured by the workpiece securing section when the apparatus is used; a suction section for sucking the gas that has passed through the base secured by the workpiece securing section using suction means; a cleaning section for removing a surplus powder adhering to an end face of the base after the introduction of the powder; a judgment section for judging an amount of the powder adhering to the base; and a workpiece transfer section for transferring the base among the workpiece securing section, the cleaning section, and the judgment section.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: January 21, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Hiroyuki Tsuji, Takayoshi Akao, Shuhei Fujita, Kazuhi Matsumoto