Patents Examined by G. Anderson
  • Patent number: 7438480
    Abstract: An optical module 1 comprises a first optical element F1, a first light receiving subassembly PD1, a second optical element F2, a second light receiving subassembly PD2, a light emitting subassembly LD3 for generating light, and a light transmitting part 3 optically coupled to the first optical element. The light emitting subassembly LD3, the first optical element F1, the second optical element F2 and the first light receiving subassembly PD1 are arranged along a predetermined plane S1. The light emitting subassembly LD3, the first optical element F1, the second optical element F2, and the second light receiving subassembly PD2 are arranged along another predetermined plane S2. The predetermined plane S1 intersects at a predetermined angle with the other predetermined plane S2.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: October 21, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Okada, Hiromi Nakanishi, Yoshiki Kuhara
  • Patent number: 7437048
    Abstract: A cable management system is provided that is configured to be located between adjacent equipment racks, while being vertically oriented to extend upward along a narrow space between the adjacent equipment racks. The cable management system comprises a main panel extending along a vertical longitudinal axis, the main panel having a series of module cutouts provided therein and oriented to extend along the longitudinal axis. The system further includes inter-bay functional modules secured in at least two of the module cutouts. The inter-bay functional modules include at least two of a fiber spool module, a patch panel module and a dispersion compensation module. The main panel includes a front wall having the module cutouts formed therein. The front wall is integrally joined with side flanges extending rearward therefrom to form a channel cross-section.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: October 14, 2008
    Assignee: Tellabs Operations, Inc.
    Inventors: Daniel Farrell, Jerome D. Pavlick, Philip T. Brinkerhoff
  • Patent number: 7437051
    Abstract: A secure communication channel is established between a portable computing device and a fixed public network outlet. Infrared beaming is employed wherein the IR beam is confined to an optical fiber placed between the IR beaming ports of the portable device and the fixed outlet. A portable computing device such as a PDA or a laptop PC has an infrared beaming port capable of bidirectional serial communication. A fiber optic system includes an optical fiber, a retractable spool for retaining the optical fiber, a fiber mount for mounting a first end of the optical fiber in alignment with the infrared beaming port of the portable computing device, and a terminator at a second end of the optical fiber. A public network outlet is provided in a fixed location and has an infrared data port in communication with an optical fiber connector adapted to receive the terminator.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: October 14, 2008
    Assignee: Sprint Communications Company L.P.
    Inventors: Fred S. Cook, Mark L. Jones
  • Patent number: 7433552
    Abstract: Light, such as from an analyte-wavelength converter or other optical sensor, is propagated to a detector or transmission structure with an entry surface and with output positions such as in an exit surface. For example, the position of light output by such a detector can be used to detect presence of an analyte such as a biomolecule or chemical. Or relative quantities of photons provided at positions of the exit surface can indicate analyte information such as presence, absence, quantity, or concentration. The detector or transmission structure can have a laterally varying energy transmission function, such as with a constant gradient or a step-like gradient. At the exit surface of the transmission structure, a photosensor array or position sensor can sense transmitted light or output photons, and, in response, circuitry can provide signals indicating the analyte information.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: October 7, 2008
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Peter Kiesel, Oliver Schmidt
  • Patent number: 7428362
    Abstract: A photonic crystal may be configured to support a surface state for logic.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: September 23, 2008
    Inventors: Roderick A. Hyde, Nathan P. Myhrvold
  • Patent number: 7425098
    Abstract: A pluggable optical module for use with optical communication systems, wherein the pluggable optical module comprises a housing having an opening arranged to receive a subassembly, wherein the subassembly is capable of being removably inserted into the housing.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: September 16, 2008
    Assignee: Avago Technologies Fiber IP (Singapore) Pte Ltd
    Inventors: David Meadowcroft, Stuart Wilkinson
  • Patent number: 7421169
    Abstract: An optical fiber cable that sustains reduced increase in transmission loss and optical fiber breakage when subject to external pressure exerted thereon, comprises an aggregate of elements including central buffer filaments disposed in the center part of the optical fiber cable and a plurality of optical fibers disposed around the central buffer filaments, as well as circumferential strength filaments disposed around the outer periphery of the aggregate of elements, and a sheath covering the circumferential strength filaments.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: September 2, 2008
    Assignee: Fujikura Ltd.
    Inventors: Takeshi Honjo, Satoru Shiobara, Tsuyoshi Shimomichi, Keiji Ohashi
  • Patent number: 7418170
    Abstract: A virtual image display device is provided which displays a two-dimensional image for viewing a virtual image in a magnified form by a virtual optical system. The virtual image display device includes an optical waveguide (13) to guide, by internal total reflection, parallel pencil groups meeting a condition of internal total reflection, a first reflection volume hologram grating (14) to diffract and reflect the parallel pencil groups incident upon the optical waveguide from outside and traveling in different directions as they are so as to meet the condition of internal total reflection inside the optical waveguide and a second reflection volume hologram grating (15) to project the parallel pencil groups guided by internal total reflection inside the optical waveguide as they are from the optical waveguide by diffraction and reflection thereof so as to depart from the condition of internal total reflection inside the optical waveguide.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: August 26, 2008
    Assignee: Sony Corporation
    Inventors: Hiroshi Mukawa, Katsuyuki Akutsu
  • Patent number: 7415185
    Abstract: A buried-waveguide light detecting element includes an n-type cladding layer on a Fe-InP substrate, a waveguide on a portion of the n-type cladding layer, and in which an n-type light guide layer, an i-light guide layer having a refractive index equal to or higher than that of the n-type cladding layer and undoped or having an impurity concentration of 1×1017 cm?3 or less, lower than the impurity concentration in the n-type light guide layer, a light absorption layer having a refractive index higher than that of the i-light guide layer, a p-type light guide layer, and a p-type cladding layer are successively layered in mesa form, from the Fe—InP substrate, and a blocking layer on the Fe—InP substrate and in which side walls of the waveguide are embedded.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 19, 2008
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaharu Nakaji, Eitaro Ishimura
  • Patent number: 7409114
    Abstract: An optical modulator using a thin plate including a portion having 20 ?m or less thickness, capable of selecting a specific polarized wave from a light wave which propagates in an optical waveguide in the modulator without reduced productivity. The modulator includes an X-cut or Y-cut thin plate of a material having an electrooptic effect; an optical waveguide formed in a top or bottom surface of the plate; and a control electrode on the top surface of the plate to modulate light which propagates in the waveguide. An attenuating means which absorbs light having a specific polarization plane of a light wave which propagates in the waveguide is disposed in the vicinity of the waveguide. The attenuating means includes light absorbing members disposed at a gap L which is 0.5 to 2 times the mode-field diameter of the light wave which propagates in the waveguide with the waveguide interposed therebetween.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: August 5, 2008
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Katsutoshi Kondou, Satoshi Oikawa
  • Patent number: 7409137
    Abstract: A drawer slide having first and second outer rails interconnected to center rails; each of the center rails interconnected to a hub rail. The drawer slide is configured for use with a cable management panel having a drawer and a chassis. The drawer slide can be mounted to the drawer to provide extended sliding movement from a closed position to an open position in only a first direction. The drawer slide can also be mounted to the drawer to provide sliding movement from a closed position to an open position in both of either a first direction and a second opposite direction.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: August 5, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventor: Kathleen M. Barnes
  • Patent number: 7404680
    Abstract: There is provided an optical module for coupling with a fiber optic cable through an optical connector, including a module body connectable with a plug of the optical connector by a dedicated guide pin, with a side surface of the module body being opposed to a mating surface of the connector plug at which an end face of the fiber optic cable is exposed, and an optical element mounted to the module body and having an optical axis brought into alignment with an optical axis of the fiber optic cable upon fitting of the guide pin into the module body and the connector plug.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: July 29, 2008
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Masaki Ono, Toshikatsu Takada, Toshifumi Kojima, Takeshi Ohno, Susumu Wakamatsu, Toshikazu Horio, Ayako Kawamura
  • Patent number: 7403688
    Abstract: A waveguide, such as a holey fiber or other optical fiber, is tapered to control the dispersion in a manner which varies along the length of the tapered portion of the fiber, thus providing the desired characteristics of the fiber. The longitudinal variation of the phase-matching conditions for Cherenkov radiation (CR) and four-wave mixing (FWM) introduced by DMM allow the generation of low-noise supercontinuum. The flexibility of the design permits the designer to control the tapering to select the bandwidth, the center frequency, or both. The holey fiber can be a polarization-maintaining fiber.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: July 22, 2008
    Assignee: University of Rochester
    Inventors: Wayne H. Knox, Fei Lu
  • Patent number: 7403690
    Abstract: A photonic crystal may be configured to support a surface state for logic.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: July 22, 2008
    Inventors: Roderick A. Hyde, Nathan P. Myhrvold
  • Patent number: 7400798
    Abstract: Fast, all optical switching of light is provided on silicon, using highly light confining structures to enhance the sensitivity of light to small changes in refractive index. In one embodiment, the light confining structures are silicon micrometer-size planar ring resonators which operate with low pump light pulse energies.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: July 15, 2008
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Vilson Rosa de Almeida, Carlos Angulo Barrios, Roberto R. Panepucci, Michal Lipson
  • Patent number: 7400812
    Abstract: Disclosed is an optical apparatus (10, 110, 410, 610) for accommodating optical fiber, such as one or more loops of optical fiber. The optical apparatus (10, 110, 410, 610) can include a body (12, 112, 412, 612) comprising an inwardly facing surface (16, 116, 416, 616) adapted for receiving a plurality of loops of a length of optical fiber. The body (16, 116, 416, 616) can include at least a portion (75) wherein the inwardly facing surface is continuous between two adjacent loops (79). Methods and apparatus are disclosed for disposing the optical fiber with an optical apparatus (10, 110, 410, 610) for accommodating the optical fiber.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: July 15, 2008
    Assignee: Nufern
    Inventor: Martin Seifert
  • Patent number: 7389032
    Abstract: The present invention achieves highly reliable optical-fiber loss adjustment at low cost, with easy work. An optical fiber is inserted from an optical fiber insertion opening into a space between an internal wall and a plurality of optical-fiber support members and, due to its self-resilience, comes in contact with the support members on its outer side. Since the radius of curvature of the fiber is sufficiently small, a loss can be adjusted with the number of turns of the fiber. The support members have a cylindrical shape and therefore come in point contact with the fiber, which can prevent microbending. Moreover, the interval (angle) between adjacent ones of the support members and the radius thereof are set such that the fiber can be led into and out of an optical-fiber adjustor, with no stress imposed.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: June 17, 2008
    Assignee: NEC Corporation
    Inventor: Takefumi Oguma
  • Patent number: 7389012
    Abstract: An electro-optical module comprising flexible connection cable and aligning capabilities is disclosed. Electro-optical devices may be soldered on a transparent substrate such as glass or a substrate comprising an optical waveguide wherein electrically conductive traces are designed, forming an electro-optical module. When such electro-optical module is inserted and aligned into a printed circuit board, the external part of the substrate, comprising electrically conductive traces and pads, referred to as flex-cable, is bent down toward the mounting plane of the PCB allowing to establish electrical connections between these pads and the PCB. The substrate may be brokenalong a pre-formed groove, and the external part of the substrate can be removed leaving the flex-cable section in place.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: June 17, 2008
    Assignee: International Business Machines Corporation
    Inventors: Stefano S. Oggioni, Bert J. Offrein
  • Patent number: 7382946
    Abstract: An electro-optical module comprising flexible connection cable and aligning capabilities is disclosed. Electro-optical devices may be soldered on a transparent substrate such as glass or a substrate comprising an optical waveguide wherein electrically conductive traces are designed, forming an electro-optical module. When such electro-optical module is inserted and aligned into a printed circuit board, the external part of the substrate, comprising electrically conductive traces and pads, referred to as flex-cable, is bent down toward the mounting plane of the PCB allowing to establish electrical connections between these pads and the PCB. The substrate may be broken along a pre-formed groove, and the external part of the substrate can be removed leaving the flex-cable section in place.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: June 3, 2008
    Assignee: International Business Machines Corporation
    Inventors: Stefano S. Oggioni, Bert J. Offrein
  • Patent number: 7380995
    Abstract: A pluggable connector, such as an optical transceiver is provided for coupling an information system unit to a fiber optical cable. The connector includes a housing, a moveable collar disposed on an optical connector end of the housing, said collar surrounding an optical connector, a cam connected to said moveable collar and a spring loaded latch extending from a side of said housing for engaging a receptacle on the information system unit so as to secure the connector in the receptacle, said cam engaging the spring loaded latch such that when the moveable collar is pulled in a direction away from the housing the latch is retracted to enable the connector to be released from the receptacle.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: June 3, 2008
    Assignee: Emcore Corporation
    Inventor: Seng-Kum Chan