Patents Examined by George Evanisko
  • Patent number: 9668664
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: June 6, 2017
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Qingguo Zeng, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George
  • Patent number: 9656097
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a set of optical elements for emitting light from a set of IR emitters and for collecting reflected light into a set of IR photodetectors, determines a set of measured optical intensities. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 23, 2017
    Inventor: Erich W. Wolf, II
  • Patent number: 9655512
    Abstract: This invention discloses methods and systems for measuring corneal epithelial thickness and power, stromal thickness, subepitheila corneal power and topography. The systems and methods disclosed herein are non-invasive, non-contact and automated imaging methods which preferably makes use of Fourier-domain optical tomography. Also disclosed herein are scanning patterns and image analysis methods for utilizing and analyzing Fourier-domain optical coherence tomography images to obtain information about conical epithelial and stromal properties as well as parameters useful for evaluating the properties. The methods and systems described herein are useful as eye disease diagnostic tools and eye surgery planning tools.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: May 23, 2017
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: David Huang, Yan Li, Ou Tan, Maolong Tang
  • Patent number: 9630013
    Abstract: Methods and devices for providing noninvasive electrotherapy and electrical stimulation are described herein. In one aspect, a device for noninvasive electrotherapy includes wireless communication circuitry configured to receive pulse generation control signals wirelessly transmitted from a computing device. The device can include pulse generation circuitry configured to deliver electrical waveforms according to instructions encoded in the pulse generation control signals. The computing device can include a cellular telephone device, a portable media player, a personal digital assistant, a tablet computer, or an internet access device.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: April 25, 2017
    Assignee: EMPI, Inc.
    Inventors: Thomas Jerome Bachinski, Michael Moore, Joseph Winn, Jay Dave, David Orr, Dain Silvola
  • Patent number: 9616218
    Abstract: A proximal end of an implantable lead may include a connector insulator having a center bore, a unitary connector pin fixedly disposed in the center bore of the connector insulator where the unitary connector pin includes a socket end configured for insertion into an electrical stimulation device and a conductor end electrically crimped to the first conductor, and a unitary ring connector having a band portion concentrically arranged around and insulated from the conductor end of the unitary connector pin and a crimp portion electrically crimped to the second conductor.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: April 11, 2017
    Assignee: SHANGHAI MICROPORT MEDICAL (GROUP) CO., LTD.
    Inventor: Grace Ying Yang Jang
  • Patent number: 9604056
    Abstract: The present disclosure provides methods for reducing the clinical presentations of a neurological movement disorder in a subject. Aspects of the methods include measuring cortical local field potentials (LFPs) from the subject's brain, calculating a modulation index related to brain synchronization from the LFPs, and administering deep brain stimulation to the subject if the calculated modulation index is outside of a threshold range. Also provided are devices, systems, and kits that may be used in practicing the subject methods.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: March 28, 2017
    Assignees: The Regents of the University of California, The United States of America—Department of Veterans Affairs
    Inventors: Philip A. Starr, Coralie de Hemptinne, Jill Ostrem, Nicole Swann
  • Patent number: 9597521
    Abstract: Apparatus and methods are described, including a medical implant that includes a receiving coil. A transmitting device includes a first transmitting coil, and a second transmitting coil disposed with respect to the first transmitting coil such that a shortest distance from an edge of the second transmitting coil to an edge of the first transmitting coil is within 20% of a length of the receiving coil. A control unit is configured to transmit power to the medical implant by driving a current source to drive a current in a clockwise direction through one of the transmitting coils, and drive a current in a counterclockwise direction through the other one of the transmitting coils. Other applications are also described.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 21, 2017
    Assignee: BLUEWIND MEDICAL LTD.
    Inventors: Anton Plotkin, Guri Oron
  • Patent number: 9592384
    Abstract: A method is disclosed for desynchronizing neuronal brain activity of a patient in which the brain activity involves a neuron population firing in a synchronized manner. The method includes measuring a pathological frequency g of the neuronal brain activity of the patient, where the pathological frequency g relates to a pathological disorder of the patient. The method further includes calculating a stimuli frequency f based on the measured pathological frequency g, where the stimuli frequency f is calculated as being equal to the measured pathological frequency g×n/m, where n is 1, 2 or 3 and m is 1, 2 or 3, and controlling an electrode to generate stimuli in sequence with the stimuli succeeding each other at the stimuli frequency f, where the stimuli stimulate the neuron population of the patient.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: March 14, 2017
    Assignee: Forschungszentrum Jülich GmbH
    Inventor: Peter A. Tass
  • Patent number: 9586049
    Abstract: A system and method for estimating the current delivered to a patient during voltage-regulated electrical stimulation therapy by an implantable medical device includes calculating a total charge delivered and a peak current delivered and the time at which the peak current was delivered using a proxy for the current delivered to the patient and a component such as a current controlled oscillator, the output of which is proportional to the current proxy together with memory for storing values relating to the output proportional to the current proxy. The stored values also may be used to construct a waveform approximating the current delivered to the patient during a therapy of voltage-regulated stimulation. The system and method may be implemented in an active implantable medical device such as an implantable neurostimulator.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: March 7, 2017
    Assignee: NeuroPace, Inc.
    Inventor: Stephen T. Archer
  • Patent number: 9579513
    Abstract: An improved architecture for an implantable medical device using a primary battery is disclosed which reduces the circumstances in which the voltage of the primary battery is boosted, and hence reduces the power draw in the implant. The architecture includes a boost converter for selectively boosting the voltage of the primary battery and for supplying that boosted voltage to certain of the circuit blocks, including digital circuitry, analog circuitry, and memory. However, the boost converter is only used to boost the battery voltage when its magnitude is below a threshold; if above the threshold, the battery voltage is passed to the circuit blocks without boosting. Additionally, some circuitry capable of operation even at low battery voltages—including the telemetry tank circuitry and the compliance voltage generator—receives the battery voltage directly without boosting, and without regard to the current magnitude of the battery voltage.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 28, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert G. Lamont, Jordi Parramon
  • Patent number: 9579062
    Abstract: Described herein are systems, devices and methods for guiding placement of electrodes, and particularly ECG electrodes on a patient. A picture of the patient's body the patient can be analyzed to determine where on the patient's body to place electrodes according to a predetermined, conventional or standard placement pattern. The methods, devices and systems may then guide a user in positioning or correcting the position of electrodes on the patient. For example, an image of the patient may be provided showing the correct position of the electrodes, which may act as a patient-specific map or guide. The electrode placement positions can correspond to conventional or standard 12-lead ECG electrode positions.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: February 28, 2017
    Assignee: ALIVECOR, INC.
    Inventor: David E. Albert
  • Patent number: 9572619
    Abstract: A medical device for treating an airway of a patient. The medical device may include an elongate tubular member having a proximal end, a distal end, and a lumen extending therebetween. The medical device may also include a plurality of conductive elements disposed on a surface of the elongate tubular member. In some embodiments, at least one of the plurality of conductive elements may be disposed distally of another of the plurality of conductive elements. In addition, each of the plurality of conductive elements may be electrically coupled to a surface of the lumen. The medical device may also include a piston movably disposed within the lumen. The piston may include a distal portion configured to make electrical contact with one or more of the plurality of conductive elements.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: February 21, 2017
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Michael D. Laufer, William Wizeman, Noah Webster, Jerry Jarrard
  • Patent number: 9572978
    Abstract: An electro stimulation system for providing signals to a subject including: at least one electrical power supply; a first switching device for intermittently connecting the output of an electrical power supply to one or more connection probes electrically connected to the subject; a second switching device for intermittently connecting one or more connection probes electrically connected to the subject to form an electrical current return path for current supplied by the electrical power supply; and switching control devices connected to the first and second switching devices; wherein the intermittent connection of the output of an electrical power supply or the intermittent formation of electrical current return paths vary during a treatment and wherein the switching of the first and second devices occurs independently of each other.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 21, 2017
    Assignee: SKOP GmbH Ltd
    Inventors: Axel L. Bernhard, Alan Cook
  • Patent number: 9554753
    Abstract: An electrocardiogram (ECG) sensor includes a motion artifact detector configured to detect a motion artifact component from a first channel signal of a first channel and a second channel signal of a second channel using a channel offset coefficient. The channel offset coefficient indicates a difference between the first channel signal and the second channel signal. The ECG sensor includes an ECG filter configured to generate an ECG signal by performing a least mean square (LMS) filtering operation on the first channel signal to remove the motion artifact component.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: January 31, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoung Oh Ki, Sang Wook Park, Hee Young Jo, Won Hyuk Jung
  • Patent number: 9550063
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a pair of optical elements for emitting light from an IR emitter and for collecting reflected light into a photodetector, determines a set of measured photocurrents. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion. The system includes automatic calibration of the optical fiber sensor when the patient is at rest, and a patient orientation detection.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: January 24, 2017
    Inventor: Erich W. Wolf, II
  • Patent number: 9545516
    Abstract: An arrangement is described for generating electrode stimulation signals to electrode contacts in an implanted cochlear implant electrode array. A signal processor processes an input sound signal to generate stimulation timing signals for signal channels associated with the electrode contacts. A pulse generator produces the electrode stimulation signals for each electrode contact based on the stimulation timing signals. A pulse adapter controls a signal format of the pulse generator in response to a somatic response input signal reflecting presence or absence of an undesired somatic response to the electrode stimulation signals. The signal format is an initial signal format based on biphasic stimulation pulses when the somatic response input signal reflects absence of the undesired somatic response, and an adapted signal form based on triphasic stimulation pulses when the somatic response input signal reflects presence of the undesired somatic response.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 17, 2017
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Werner Sürth, Reinhold Schatzer
  • Patent number: 9543750
    Abstract: A surgical generator and related method for mitigating overcurrent conditions are provided. The surgical generator includes a power supply, a radio frequency output stage, an overcurrent detection circuit in operative communication with an interrupt circuit, and a processor. The power supply generates a power signal and supplies the power signal to the radio frequency output stage. The radio frequency output stage generates a radio frequency signal from the power signal. The overcurrent detection circuit detects an overcurrent of the power signal and/or an overcurrent of the radio frequency signal. The interrupt circuit provides an interrupt signal in response to a detected overcurrent. The processor receives the interrupt signal and supplies a pulse-width modulation signal to the power supply and incrementally decreases the duty cycle of the pulse-width modulation signal in response to the interrupt signal. The radio frequency output stage may be disabled in response to the detected overcurrent.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: January 10, 2017
    Assignee: Covidien LP
    Inventors: Robert B. Smith, Steven C. Rupp
  • Patent number: 9533149
    Abstract: A control system for use with a neurostimulator comprises a user interface for receiving an input from a user and a controller. The user interface has a first control and a second control. The controller is configured for, in response to actuating the first control, operating the neurostimulation control system in a PNFS programming mode, and for, in response to actuating the second control, operating the neurostimulation control system in a PNS programming mode. A method of providing therapy to a patient comprises initially conveying pulsed electrical current at a pulse width into a peripheral tissue region of the patient to create a side effect via stimulation of one of a nerve ending and neural axon, and subsequently conveying pulsed electrical current at an adjusted pulse width into the peripheral tissue region to create a therapeutic effect via stimulation of the other one of the nerve ending and neural axon.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: January 3, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Dongchul Lee
  • Patent number: 9522284
    Abstract: Electrical circuit componentry is switchable into a defibrillator circuit to deliver a constant pacing current to a patient. The circuitry may include a constant current source inserted in a leg of the defibrillator circuit or a resistor of selected value inserted between a high voltage source and the high side of a defibrillator circuit.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: December 20, 2016
    Assignee: CAMERON HEALTH INC.
    Inventor: Alan H. Ostroff
  • Patent number: 9517332
    Abstract: Anchors for use with implantable medical leads include an elastic body containing one or more rigid bodies that have longitudinal free edges. The longitudinal free edges run from end to end to define full length slots. Partial length slots may also be included within the one or more rigid bodies. The full length and partial length slots allow for deflection of the rigid bodies against the body of an implantable medical lead to hold the anchor in place on the lead. The full length slots allow a blade to pass through and cut a slit in the elastic body which allows the anchor to be removed from the lead.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: December 13, 2016
    Assignee: MEDTRONIC, INC.
    Inventors: Robert L. Olson, Thomas C. Bischoff, Michael J. Kern