Patents Examined by George Suchfield
  • Patent number: 8770287
    Abstract: A method of servicing a wellbore in a subterranean formation comprising placing a foamed wellbore servicing fluid into a wellbore; flowing the foamed wellbore servicing fluid back to the wellbore surface; and contacting the foamed wellbore servicing fluid with an immobilized defoaming agent structure comprising an inert substrate and a defoamer. A system comprising a foamed wellbore servicing fluid in contact with a de-foaming structure, wherein the de-foaming structure comprises a defoamer covalently bonded to an inert substrate.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: July 8, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Kenneth W. Pober
  • Patent number: 8770281
    Abstract: A method for recovering hydrocarbons from a subterranean reservoir by operating a substantially gravity-controlled recovery process with two adjacent well pairs. Each well pair includes an injector well and a producer well. A mobilized zone forms around each well pair through the gravity-controlled recovery process, and a bypassed region forms between the adjacent well pairs when the respective mobilized zone of each well pair merge to form a common mobilized zone. A plurality of infill producer wells are provided in the bypassed region. The plurality of infill producer wells are operated to establish fluid communication between the plurality of infill producer wells and the common mobilized zone. Once fluid communication is established, the plurality of infill producer wells and the adjacent well pairs are operated under a substantially gravity-controlled recovery process, and hydrocarbons are recovered from the plurality of infill producer wells and from the producer wells.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 8, 2014
    Assignee: Cenovus Energy Inc.
    Inventors: John E. Arthur, Simon D. Gittins, Harbir S. Chhina
  • Patent number: 8752627
    Abstract: A method of fracturing a subterranean formation comprising at least in part shale formation, comprises providing a carrier fluid; providing a particulate blend including a first amount of particulates having a first average particle size between about 100 and 2000 microns and a second amount of particulates having a second average particle size between about three and twenty times smaller than the first average particle size, such that a packed volume fraction of the particulate blend exceeds 0.75; combining the carrier fluid and the particulate blend into a fracturing slurry; fracturing the formation with the fracturing slurry to create at least a fracture; and removing the second amount of particulates from the fracture.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: June 17, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Ryan Hartman, Mohan K. R. Panga, Bruno Drochon, John W. Still
  • Patent number: 8746341
    Abstract: A method of foaming a fluid for recovering gas from a gas well and enhancing oil production from a gas-lifted oil well penetrating a subterranean oil-bearing formation is disclosed and claimed. The method includes introducing into the fluid a foam-forming amount of a composition comprising at least one compound having the general formula: R1 is selected from a saturated linear or branched alkyl, an unsaturated linear or branched alkyl, a substituted naphthalene, a substituted benzene, a natural oil, and a natural oil derivative. R2 is a C2-C8 alkyl. R3, R4, and R5 are independently selected from trimethyl, triethyl, diethyl, monoethyl, benzyl dimethyl, and benzyl diethyl. X is selected from hydrogen, methyl, and ethyl. Z? is a negatively charged counterion.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: June 10, 2014
    Assignee: Nalco Company
    Inventors: Duy T. Nguyen, Fenfen Huang
  • Patent number: 8739866
    Abstract: A method for extracting bitumen and/or extra-heavy oil from an underground deposit is provided. The energy for producing the steam and for the electric heating is generated in situ, for which purpose part of the extracted bitumen and/or extra-heavy oil is burned in an industrial turbine with a downstream generator coupled to the turbine. The industrial turbine may be a gas turbine or a steam turbine. In particular the industrial turbine with downstream generator is assigned a waste heat recovery steam generator which serves for generating the steam and accordingly takes the form of a boiler. Through intermediate storage of the bitumen and/or ultra-heavy oil produced it is possible to implement a self-contained closed circuit which operates autonomously, independently of any external energy supply, using approx. 20% of the extracted bitumen and/or extra-heavy oil for the purposes of extraction.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: June 3, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Norbert Huber, Bernd Wacker
  • Patent number: 8733437
    Abstract: Embodiments of the invention described herein relate to methods and apparatus for recovery of viscous hydrocarbons from subterranean reservoirs. In one embodiment, a method for recovery of hydrocarbons from a subterranean reservoir is provided. The method includes drilling an injector well to be in communication with a reservoir having one or more production wells in communication with the reservoir, installing casing in the injector well, cementing the casing, perforating the casing, positioning a downhole steam generator in the casing, flowing fuel, oxidant and water to the downhole steam generator to intermittently produce a combustion product and/or a vaporization product in the reservoir, flowing injectants to the reservoir, and producing hydrocarbons through the one or more production wells.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 27, 2014
    Assignee: World Energy Systems, Incorporated
    Inventors: Myron I. Kuhlman, Marvin J. Schneider, Norman W. Hein, Jr., Anthony Gus Castrogiovanni, Allen R. Harrison, Sharon Mayes
  • Patent number: 8733441
    Abstract: The present invention provides a method for selectively sealing a thief zone in a hydrocarbon reservoir located in a calcium-rich formation and penetrated by a borehole comprising injecting into the thief zone a sealing fluid comprising a mixture of and hydronium ions (H+) and a source of sulfate ions (SO42?) which mixture can provide precipitation of a designated calcium sulfate compound.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 27, 2014
    Assignee: Maersk Olie OG Gas A/S
    Inventor: Michael Jensen
  • Patent number: 8720556
    Abstract: Fracturing operations can be problematic in completed wellbores containing at least one existing fracture, since it can be difficult to seal an existing fracture and initiate a new fracture within a reasonable timeframe due to the presence of particulate materials in the wellbore. Methods for fracturing a completed wellbore can comprise introducing a treatment fluid comprising a plurality of degradable sealing particulates into a completed wellbore penetrating a subterranean formation having an existing fracture therein; sealing the existing fracture with at least a portion of the degradable sealing particulates, thereby forming a degradable particulate seal; after sealing, allowing any degradable sealing particulates remaining in the treatment fluid to degrade, such that the treatment fluid becomes substantially particulate free; and after the treatment fluid becomes substantially particulate free, fracturing the subterranean formation so as to introduce at least one new fracture therein.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: May 13, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Bradley L. Todd
  • Patent number: 8720546
    Abstract: Disclosed herein is introduction of different nutrient solution formulations to a subterranean target site to prevent biofilm formation and biomass aggregation at the sand face of an injection well bore during MEOR or bioremediation processes. A first nutrient solution formulation supports growth of introduced microorganisms and a second nutrient solution formulation is used to promote biofilm formation to allow plugging of pores and channels in the subterranean target site, for MEOR or bioremediation.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: May 13, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Albert W. Alsop, Sheryl M. Anyzek, Robert D. Fallon, Edwin R. Hendrickson, Sharon Jo Keeler, Abigail K. Luckring, Michael P. Perry
  • Patent number: 8720569
    Abstract: A composition of a treatment fluid and method for treating a zone of well. In an embodiment, the composition includes at least: (i) an aqueous phase; (ii) at least 5 ppm iron ion in the aqueous phase; (iii) a source of at least 5 ppm iodide ion to be dissolved in the aqueous phase; (iv) a water-soluble viscosity-increasing agent dissolved in the aqueous phase; and (v) a source of an oxidative breaker to be dissolved in the aqueous phase. In an embodiment, a method of treating a zone of a subterranean formation of a well includes at least the steps of: (a) forming a treatment fluid according to the composition; and (b) introducing the treatment fluid into the zone.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: May 13, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: David Michael Loveless, Lucas Kurtis Fontenelle, Rajesh Kumar Saini
  • Patent number: 8720563
    Abstract: A cement composition for use in an oil or gas well, the cement composition comprises: a calcium aluminate cement; water; an organic acid; and a polymeric mixture comprising: (A) water; (B) citric acid; (C) a first polymer, wherein the first polymer: (i) comprises a cellulose backbone and carboxymethyl functional groups; and (ii) has a molecular weight of less than 100,000; and (D) a second polymer, wherein the second polymer: (i) comprises a lignosulfonate; and (ii) has a molecular weight of less than 100,000, wherein a test composition consisting essentially of: the cement; the water; the organic acid; and the polymeric mixture, and in the same proportions as in the cement composition has a thickening time of at least 5 hours at a temperature of 300° F. (148.9° C.) and a pressure of 10,000 psi (68.9 MPa).
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: May 13, 2014
    Assignee: Halliburton Energy Services, Inc
    Inventors: Trissa Joseph, Pankaj Phani Chakraborty, Mohand Melbouci
  • Patent number: 8720549
    Abstract: A process for utilizing microwaves to heat H2O within a subterranean region wherein the heated H2O contacts heavy oil in the subterranean region to lower the viscosity of the heavy oil and improve production of the heavy oil.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 13, 2014
    Assignee: ConocoPhillips Company
    Inventors: Dwijen K. Banerjee, John L. Stalder, Daniel R. Sultenfuss, Wayne Reid Dreher, Jr., Thomas J. Wheeler
  • Patent number: 8720557
    Abstract: A method of treating a zone of a subterranean carbonate formation penetrated by a wellbore is provided. The method includes the steps of: According to an embodiment, a method of treating a zone of a subterranean carbonate formation penetrated by a wellbore is provided, the method including the steps of: (a) forming a treatment fluid comprising: (i) water; (ii) a water-soluble polymer having at least one functional group that can be crosslinked with aluminum(III); and (iii) a water-soluble aluminum carboxylate; wherein the pH of the treatment fluid is less than 1; (b) introducing the treatment fluid through the wellbore into the zone; and (c) allowing time for the strong acid in the treatment fluid to spend in the formation such that the pH of the fluid increases sufficiently for the aluminum of the aluminum carboxylate to crosslink the polymer.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: May 13, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Prajakta R. Patil, Anjali R. Sarda, Shoy C. George, Yogesh K Choudhary, Rajendra Kaigankar
  • Patent number: 8720548
    Abstract: A process for utilizing microwaves to heat H2O and sulfur hexafluoride within a subterranean region wherein the heated H2O and sulfur hexafluoride contacts heavy oil in the subterranean region to lower the viscosity of the heavy oil and improve production of the heavy oil.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 13, 2014
    Assignee: ConocoPhillips Company
    Inventors: Dwijen K. Banerjee, John L. Stalder, Tawfik N. Nasr, Wayne Reid Dreher, Jr.
  • Patent number: 8720550
    Abstract: A process for utilizing microwaves to heat H2O within a subterranean region wherein the heated H2O contacts heavy oil in the subterranean region to lower the viscosity of the heavy oil and improve production of the heavy oil.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 13, 2014
    Assignee: ConocoPhillips Company
    Inventors: Dwijen K. Banerjee, John L. Stalder, Maxine Jones Madison
  • Patent number: 8720547
    Abstract: A process for utilizing microwaves to heat solvent within a subterranean region wherein the heated solvent, vapor, contacts heavy oil in the subterranean region to lower the viscosity of the heavy oil and improve production of the heavy oil.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 13, 2014
    Assignee: ConocoPhillips Company
    Inventors: Dwijen K. Banerjee, John L. Stalder, Daniel R. Sultenfuss, Wayne Reid Dreher, Jr., Thomas J. Wheeler
  • Patent number: 8720555
    Abstract: A method for diverting fluids across a perforation tunnel in high-rate water pack operations may include providing a wellbore extending into a subterranean formation, wherein a perforation tunnel provides a fluid connection between the wellbore and the subterranean formation; providing a diverting particulate that comprises a degradable plasticized polymer coating on a particulate; placing the diverting particulate into the perforation tunnel, wherein the step of placing the diverting particulate forms a particulate pack within the subterranean formation and the perforation tunnel; allowing the degradable plasticized polymer coating to deform and fill the interstitial spaces within the particulate pack in the perforation tunnel such that the fluid conductivity between the wellbore and the subterranean formation is substantially blocked; and allowing the plasticized polymer coating to degrade over time thereby substantially restoring the fluid conductivity between the wellbore and the subterranean formation.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: May 13, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Feng Liang, Bradley L. Todd, Rajesh K. Saini, Stanley J. Heath
  • Patent number: 8714249
    Abstract: A method of servicing a wellbore in a subterranean formation comprising placing a first wellbore servicing fluid comprising a self-degrading diverter material into the wellbore wherein the self-degrading diverter materials comprises (i) a diverting material and (ii) a degradation accelerator; allowing the self-degrading diverter material to form a diverter plug at a first location in the wellbore or subterranean formation; diverting the flow of a second wellbore servicing fluid to a second location in the wellbore or subterranean formation; and removing the diverter plug, wherein the first and second wellbore servicing fluids may be the same or different.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: May 6, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Tingji Tang
  • Patent number: 8708045
    Abstract: Treatment of a subterranean formation can be conducted with viscosified treatment fluids that comprise a multifunctional boronic acid crosslinking agent. Methods for treating a subterranean formation can comprise providing a treatment fluid that comprises an aqueous base fluid, a gelling agent, and a multifunctional boronic acid crosslinking agent that comprises a copolymer comprising at least one boronic acid monomer unit and at least one water-soluble monomer unit; and introducing the treatment fluid into a subterranean formation.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: April 29, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James William Ogle, Jeremy Holtsclaw, Rajesh Kumar Saini
  • Patent number: 8701763
    Abstract: Method of treating a hydrocarbon-bearing formation having brine and treated hydrocarbon-bearing formations. The method includes contacting a hydrocarbon-bearing formation with a composition comprising solvent and a polymer. The polymer comprises divalent units represented by formula: (formula I); and a plurality of alkyleneoxy groups. In some embodiments, the solvent at least one of solubilizes or displaces the brine in the formation. In some embodiments, the solvent includes at least one of a polyol or polyol ether independently having from 2 to 25 carbon atoms and at least one of water, a monohydroxy alcohol, an ether, or a ketone, wherein the monohydroxy alcohol, the ether, and the ketone each independently have up to 4 carbon atoms. Hydrocarbon-bearing formations and proppants treated with the polymer are also disclosed.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: April 22, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Jimmie R. Baran, Jr., Gregory D. Clark, George G.I. Moore, Michael S. Terrazas