Patents Examined by Gordon Baldwin
  • Patent number: 10147633
    Abstract: A transfer apparatus transfers an object to be transferred onto a case. The transfer apparatus includes a transfer arm, an arm shaft, a plurality of electromagnets, and a control unit. The transfer arm has a pick unit on a front end thereof and extends and retracts in a horizontal direction. The object to be transferred is held on the pick unit. The arm shaft supports the transfer arm. The plurality of electromagnets apply an force in upward direction to the transfer arm by generating a magnetic field in the case. The control unit controls the plurality of electromagnets in such a manner that when the transfer arm extends and retracts in the horizontal direction, the force in upward direction applied to the transfer arm increases as a length from the arm shaft to the front end of the transfer arm increases.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 4, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shinji Himori, Takehiro Kato, Etsuji Ito
  • Patent number: 10145007
    Abstract: [Problem] To produce a DLC film excellent in hardness and adhesiveness while preventing a film-forming rate from slowing even when the gas pressure in a chamber is a low pressure without requiring a large-scale facility such as a thermostatic device. [solution] There is provided a DLC film film-forming method being a film-forming method to film-form a DLC film on a substrate by a plasma CVD method, the method including: setting a voltage to be applied to a substrate using a DC pulse power supply to a bias voltage; using an acetylene gas or a methane gas as a film-forming gas to be supplied into a chamber; setting the total pressure of the gas in the chamber to not less than 0.5 Pa and not more than 3 Pa when the methane gas is used; setting the total pressure of the gas in the chamber to not less than 0.3 Pa and not more than 3 Pa when the acetylene gas is used; and setting the bias voltage to not less than 0.9 kV and not more than 2.2 kV.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: December 4, 2018
    Assignee: DOWA THERMOTECH CO., LTD.
    Inventors: Hiroki Tashiro, Hiroyuki Matsuoka, Motohiro Watanabe, Wataru Sakakibara, Soichiro Nogami
  • Patent number: 10134578
    Abstract: According to an embodiment of the present disclosure, a substrate processing apparatus including a housing is provided. The housing having an internal atmosphere of a reduced oxygen concentration includes a box structure configured to accommodate a substrate holder which receives a plurality of substrates therein and including a first gap and a second gap. Further, the housing includes an inert gas pipe connected to the box structure, and configured to supply an inert gas to the box structure, a cover member mounted in the box structure, and a buffer space formed between an internal space of the box structure and the cover member.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: November 20, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Kiyohiko Gokon
  • Patent number: 10125425
    Abstract: Stripping a metallic bond coat from an article using a wet chemical process. An article removed from service and having a metallic bond coat applied over a surface of its metallic substrate is provided. The metallic bond coat is used to improve the adhesion of a TBC to the article, so grit blasting to first remove any TBC applied over the bond coat and which still remains on the article initially may be required. The bond coated article is then immersed in an acid solution of HCl/H3PO4 at a predetermined temperature for a predetermined amount of time, the HCl/H3PO4 solution reacting with the bond coat applied over the metallic substrate to form a smut on the surface. The article is then removed from the HCl/H3PO4 solution and quickly immersed in a solution of NaOH for a predetermined amount of time to at least partially desmut the surface.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: November 13, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John David Ward, Jr., Liming Zhang
  • Patent number: 10113231
    Abstract: A process chamber is provided including a sidewall, a substrate support having an outer ledge, and a gas inlet beneath the substrate support. The process chamber further includes a first liner disposed around a bottom surface of the outer ledge of the substrate support. The first liner has an inner surface separated from the outer ledge of the substrate support by a first gap. The process chamber further includes a flow isolator ring having an inner bottom surface disposed on the outer ledge of the substrate support and an outer bottom surface extending outwardly relative to the inner bottom surface, the outer bottom surface overlying the first gap.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: October 30, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dale R. Dubois, Kalyanjit Ghosh, Kien N. Chuc, Mayur G. Kulkarni, Sanjeev Baluja, Yanjie Wang, Sungjin Kim
  • Patent number: 10100409
    Abstract: A chemical vapor deposition (CVD) reactor includes a double wall vacuum processing chamber with an inner wall and an outer wall and fluid passages between the walls. A layer of thermal insulation covers the outer wall. A layer of high temperature thermal insulation covers the inner wall. Heating elements are positioned in the interior of the processing chamber to heat a substrate mounted in the chamber. A gas inlet structure is positioned through the inner and outer walls of the chamber and oriented to direct a flow of reactant gas against the substrate to form a CVD coating on the substrate. A gas outlet structure connected to a vacuum and effluent management system is positioned through the inner and outer walls of the chamber.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: October 16, 2018
    Assignee: United Technologies Corporation
    Inventor: Kirk C. Newton
  • Patent number: 10099245
    Abstract: Variable geometry process kits for use in semiconductor process chambers have been provided herein. In some embodiments, a process kit for use in a semiconductor process chamber includes: an annular body configured to rest about a periphery of a substrate support; a first ring positioned coaxially with the annular body and supported by the annular body; a second ring positioned coaxially with the first ring and supported by the first ring; and an annular shield comprising a horizontal leg positioned coaxially with the second ring such that a portion of the horizontal leg is aligned with and below portions of the first ring and second ring.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 16, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: John Forster, Zhenbin Ge, Alan Ritchie
  • Patent number: 10096495
    Abstract: A substrate processing apparatus includes a processing container configured to air-tightly accommodate substrates, a plurality of mounting stands configured to mount the substrates, a process gas supply part configured to supply a process gas to the mounting stands, an exhaust mechanism configured to evacuate an interior of the processing container, a partition wall configured to independently surround the mounting stands with a gap left between the partition wall and each of the mounting stands, and cylindrical inner walls configured to independently surround the mounting stands with a gap left between each of the inner walls and each of the mounting stands. Slits are formed in the inner walls. The process gas in the processing spaces is exhausted via the slits. The inner walls include partition plates for bypassing the process gas so that the process gas does not directly flow into the slits.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: October 9, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Manabu Amikura, Toshiki Hinata
  • Patent number: 10072336
    Abstract: A film forming apparatus includes a rotary table having a loading area at a first surface side thereof and revolving a substrate loaded on the loading area, a rotation mechanism rotating the loading area such that the substrate rotates around its axis, a processing gas supply mechanism supplying a processing gas to a processing gas supply area so that a thin film is formed on the substrate which repeatedly passes through the processing gas supply area the revolution of the substrate, and a control part configured to perform a calculation of a rotation speed of the substrate based on a parameter including a rotation speed of the rotary table to allow an orientation of the substrate to be changed whenever the substrate is positioned in the processing gas supply area, and to output a control signal for rotating the substrate at a calculated rotation speed.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: September 11, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hitoshi Kato, Shigehiro Miura, Hiroyuki Kikuchi, Katsuyoshi Aikawa
  • Patent number: 10049881
    Abstract: Embodiments of the invention provide an improved apparatus and methods for nitridation of stacks of materials. In one embodiment, a remote plasma system includes a remote plasma chamber defining a first region for generating a plasma comprising ions and radicals, a process chamber defining a second region for processing a semiconductor device, the process chamber comprising an inlet port formed in a sidewall of the process chamber, the inlet port being in fluid communication with the second region, and a delivery member disposed between the remote plasma chamber and the process chamber and having a passageway in fluid communication with the first region and the inlet port, wherein the delivery member is configured such that a longitudinal axis of the passageway intersects at an angle of about 20 degrees to about 80 degrees with respect to a longitudinal axis of the inlet port.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 14, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Matthew S. Rogers, Roger Curtis, Lara Hawrylchak, Ken Kaung Lai, Bernard L. Hwang, Jeffrey Tobin, Christopher Olsen, Malcolm J. Bevan
  • Patent number: 10030297
    Abstract: A method for producing a hot-dip aluminum-coated steel wire, including dipping a steel wire in molten aluminum, and drawing up the steel wire from the molten aluminum, wherein at the time of drawing up the steel wire from the molten aluminum, a stabilization member is contacted with a surface of the molten aluminum and the steel wire at the boundary between the steel wire and the surface of the molten aluminum, a nozzle having a tip end of which inside diameter is 1 to 15 mm is disposed so that the tip end is positioned at a place away from the steel wire by a distance of 1 to 50 mm, and an inert gas having a temperature of 200 to 800° C. is blown out from the tip end to the boundary at a volume flow rate of 2 to 200 L/min.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: July 24, 2018
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Tadaaki Miono, Shinichi Kamoshida, Yasunori Hattori, Takeshi Shimizu
  • Patent number: 10023954
    Abstract: Slit valve apparatuses are described. In one aspect, a slit valve apparatus is disclosed having a gate with at least one sealing surface, a blocker element, and a connector member that structurally connects the gate and the blocker element. Systems and methods including the slit valve apparatus are also disclosed, as are numerous other aspects.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: July 17, 2018
    Assignee: Applied Materials, Inc.
    Inventors: John J. Mazzocco, Dale Robert Du Bois, Juan Carlos Rocha-Alvarez
  • Patent number: 10006121
    Abstract: Provided is a method of manufacturing a memory device having a 3-dimensional structure, which includes alternately stacking one or more dielectric layers and one or more sacrificial layers on a substrate, forming a through hole passing through the dielectric layers and the sacrificial layers, forming a pattern filling the through hole, forming an opening passing through the dielectric layers and the sacrificial layers, and supplying an etchant through the opening to remove the sacrificial layers. The stacking of the dielectric layers includes supplying the substrate with one or more gases selected from the group consisting of SiH4, Si2H6, Si3H8, and Si4H10, to deposit a silicon oxide layer. The stacking of the sacrificial layers includes supplying the substrate with one or more gases selected from the group consisting of SiH4, Si2H6, Si3H8, Si4H10, and dichloro silane (SiCl2H2), and ammonia-based gas, to deposit a silicon nitride layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: June 26, 2018
    Assignee: EUGENE TECHNOLOGY CO., LTD.
    Inventors: Sung Kil Cho, Hai Won Kim, Sang Ho Woo, Seung Woo Shin, Gil Sun Jang, Wan Suk Oh
  • Patent number: 9963783
    Abstract: A deposition apparatus according to an exemplary embodiment of the present invention includes a plurality of reaction spaces, a plurality of plasma electrodes respectively disposed in the reaction spaces, a first plasma processor connected to at least two plasma electrodes, and a first plasma power source connected to the first plasma processor. The first plasma processor may include a plasma distributor or a plasma splitter.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: May 8, 2018
    Assignee: ASM GENITECH KOREA LTD.
    Inventors: Ki Jong Kim, Hyun Kyu Cho, Jin Su Lee, Se Yong Kim
  • Patent number: 9945507
    Abstract: An applicator machine and a process for heating and coating a section of pipeline. The applicator machine includes a frame configured to rotate about a section of pipeline to be heated and coated, rotating means operable to rotate the frame, and coating material applicators induction coils and radiant heaters mounted on the frame and rotatable therewith. The induction coil is configured to heat a section of pipeline adjacent to the induction coil to a coating material application temperature. The radiant heaters are configured to heat factory-applied coatings. Each coating material applicator sprays coating material through an aperture in a respective induction coil. The applicator includes an enclosure configured to surround a section of pipeline and provision for evacuating and collecting waste coating material. The coating material applicator may be configured to spray powder coating material, such as fusion bonded epoxy powder material and/or chemically modified polypropylene powder material.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: April 17, 2018
    Assignee: PIPELINE INDUCTION HEAT LIMITED
    Inventors: Michael George, Jason Montgomery
  • Patent number: 9923200
    Abstract: A method for making a sulfur-graphene composite material is provided. In the method, an elemental sulfur solution and a graphene dispersion are provided. The elemental sulfur solution includes a first solvent and an elemental sulfur dissolved in the first solvent. The graphene dispersion includes a second solvent and graphene sheets dispersed in the second solvent. The elemental sulfur solution is added to the graphene dispersion, a number of elemental sulfur particles are precipitated and attracted to a surface of the graphene sheets to form the sulfur-graphene composite material. The sulfur-graphene composite material is separated from the mixture.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: March 20, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Wang, Xiang-Ming He, Jian-Jun Li, Jian-Wei Guo, Wen-Ting Sun, Jian-Guo Ren
  • Patent number: 9865454
    Abstract: A substrate processing apparatus includes a vacuum chamber including a top plate, a rotary table rotatably disposed in the vacuum chamber, a first process gas supply part that supplies a first process gas to be adsorbed on a surface of a substrate placed on the rotary table, a plasma processing gas supply part that is disposed apart from the first process gas supply part in a circumferential direction of the rotary table and supplies a second process gas to the surface of the substrate, a separation gas supply part that supplies a separation gas for separating the first process gas and the second process gas, a plasma generator that converts the second process gas into plasma, and an elevating mechanism that moves at least one of the plasma generator and the rotary table upward and downward.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: January 9, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hitoshi Kato, Hiroyuki Kikuchi, Masato Yonezawa, Jun Sato, Shigehiro Miura
  • Patent number: 7060368
    Abstract: Disclosed is a ReCr alloy coating for diffusion barrier formed on a substrate, such as a high-temperature equipment member, which comprises an atomic composition of 50% to less than 90% Re, with the remainder consisting essentially of Cr except for inevitable impurities. Even if the alloy coating for diffusion barrier includes a diffusion layer containing at least one of the group consisting of Al, Si and Cr, a desired alloy composition of the alloy coating for diffusion barrier can be assured by a surface coating process and diffused components from the substrate while substantially preventing the diffusion of the elements of the diffusion layer during a homogenizing heat treatment. The alloy coating for diffusion barrier may include a Re-containing-alloy stress relief layer inserted between the film and the substrate. The ReCr—Ni alloy coating can suppress the deterioration of the substrate and the coating layer due to the reaction therebetween to provide an extended life span of the equipment member.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: June 13, 2006
    Assignees: Japan Science and Technology Agency, Ebara Corporation
    Inventors: Toshio Narita, Shigenari Hayashi, Takayuki Yoshioka, Hiroshi Yakuwa