Patents Examined by Gustavo Rosario Benitez
  • Patent number: 10868473
    Abstract: A secondary side controlled control circuit for power converter with synchronous rectifier is provided. The secondary side controlled control circuit comprises a primary side controller and a secondary side controller. The primary side controller generates a primary side switching signal for switching a primary side switch of the power converter. The secondary side controller generates a secondary side switching signal for switching a switch of the synchronous rectifier of the power converter. The secondary side controller generates a primary side control signal to control the primary side controller for controlling the primary side switching signal.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: December 15, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Yung-I Chang, Kuo-Hsien Huang, Chen-Hua Chiu
  • Patent number: 10855198
    Abstract: A power supply apparatus includes converters connected in parallel to a three-phase alternating-current power supply, input current detectors that detect current flowing through the respective three phases of the three-phase alternating-current power supply, and load current detectors that detect load current of the converters. Each of the converters includes AC-DC converters inputs of connected to two of the three phases. The AC-DC converters are connected in parallel to each other using a common output. The AC-DC converters that are driven maintain balance of output current. A controller determines whether switching between a driven state and a stopped state of the respective AC-DC converters is performed based on detection results from the load current detectors and switches between the driven state and the stopped state of the respective multiple AC-DC converters based on detection results by the input current detectors.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: December 1, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Michiya Mori, Gaku Kamitani
  • Patent number: 10855193
    Abstract: A power conversion unit includes an AC/DC converter converting alternating-current power supplied from an AC power supply into direct-current power to charge a high-voltage battery with the direct-current power and a step-down DC/DC converter generating an intermediate voltage provided by stepping down a voltage of direct-current power supplied from the high-voltage battery. A constant-voltage DC/DC converter outputs, to a low-voltage load unit, direct-current power provided by stepping down the intermediate voltage of direct-current power output from the step-down DC/DC converter at a constant step-down ratio.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: December 1, 2020
    Assignee: YAZAKI CORPORATION
    Inventor: Akinori Maruyama
  • Patent number: 10848051
    Abstract: A multiphase switching converter includes a first switching converter circuit including a power stage coupled to a DC voltage supply and a controller. The controller includes an over-current (OC) circuit that can detect an OC event and, upon detecting the OC event, set a command signal to a preset low value and provide a first hiccup signal. A synchronization circuit can generate a second hiccup signal based on the command signal of the OC circuit satisfying a first reference threshold value, and a sampled portion of an output voltage of the power stage satisfying a second reference threshold value. A hiccup timer can be triggered by one of the first hiccup signal or the second hiccup signal to start a hiccup pulse in response to being triggered.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: November 24, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventors: Yingyi Yan, Qian Li, Yi Ding Gu
  • Patent number: 10840818
    Abstract: A power conversion apparatus includes N semiconductor modules respectively including a switch part including first and second semiconductor switches coupled in series, and an output terminal coupled to a node that connects the first and second semiconductor switches, where N is an integer greater than or equal to 3, wherein the N semiconductor modules are arranged so that the output terminals thereof are adjacent to each other. The power conversion apparatus further includes an output bar to couple the output terminals of the N semiconductor modules so that a parasitic inductance of a current path coupling the output terminals of first and second semiconductor modules among the N semiconductor modules, and a parasitic inductance of a current path coupling the output terminals of the first and third semiconductor modules among the N semiconductor modules, are approximately balanced.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: November 17, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Hong-Fei Lu
  • Patent number: 10826401
    Abstract: Input AC voltage sensing for a flyback circuit. The flyback circuit is configured as “primary-high”, namely a primary switch of the flyback circuit is positioned “high” to receive an input AC voltage through a first rectifying circuit. A primary winding of the flyback circuit is coupled to a primary ground reference. A voltage sensing circuit has a processing circuit and a first sensing resistor. The processing circuit has a first terminal coupled to the input AC source through a second rectifying circuit, a second terminal coupled to the primary ground reference and an output terminal. The processing circuit subtracts a voltage at the second terminal from a voltage at the first terminal to obtain a differential voltage, which is then sampled and held as an input AC voltage sensing signal.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: November 3, 2020
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Siran Wang
  • Patent number: 10819243
    Abstract: An isolated DC/DC converter includes: DC/AC converter; an isolation transformer; a rectifier circuit; and a control unit. The control unit includes a DC input power calculation unit that calculates a DC input power of the DC/AC converter; a first adjustment unit that calculates a DC input power command value such that a DC output voltage detection value follows a DC output voltage command value; an input power limit unit that limits an upper limit value of the DC input power command value to a predetermined value and output the DC input power command value; a second adjustment unit that calculates a DC output power command value such that a DC input power calculation value follows the DC input power command value; and a drive pulse generation unit that generates drive pulses for semiconductor switching device based on the DC output power command value.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: October 27, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi Iida, Yukihiro Nishikawa
  • Patent number: 10819210
    Abstract: A power supply apparatus including a PWM signal generating circuit, a power conversion circuit, a voltage dividing circuit, a capacitor circuit, and a feedback compensation circuit is provided. The PWM signal generating circuit generates and modulates a PWM signal according to a feedback signal. The power conversion circuit converts an input voltage into an output voltage according to the PWM signal. The voltage dividing circuit divides the output voltage and generates a first voltage to a node. The capacitor circuit generates a second voltage to the node according to the output voltage in response to a voltage change of the output voltage. The feedback compensation circuit generates the feedback signal based on the first voltage and a reference voltage before the output voltage is ready. The feedback compensation circuit generates the feedback signal based on the second voltage and the reference voltage after the output voltage is ready.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: October 27, 2020
    Assignee: Acer Incorporated
    Inventor: Tzu-Tseng Chan
  • Patent number: 10811987
    Abstract: A power converter system is provided and includes a first switch circuit configured to receive a first Direct Current (DC) voltage, the first switch circuit coupled to a second switch circuit having a positive connection and a negative connection to receive a second DC voltage. The power converter system further includes a first capacitor, coupled between the positive connection and a neutral point, a second capacitor, coupled between the negative connection and the neutral point, and an Alternating Current (AC) switch circuit coupled to the first capacitor and to the second capacitor. The power converter system includes a controller configured to maintain a substantially equal voltage level across the first capacitor and the second capacitor, the controller being coupled to the first switch circuit, the second switch circuit, and the AC switch. A method of controlling the power converter system is further disclosed.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: October 20, 2020
    Assignee: SCHNEIDER ELECTRIC IT CORPORATION
    Inventors: Sachin Mahadev Parsekar, Milind Dighrasker
  • Patent number: 10811968
    Abstract: The disclosed technology can be used to convert direct-current voltage and current from an input to a different or the same voltage and current at an output. One example direct-current to direct-current (DC-DC) power converter includes a first switch connected between a source voltage and a first side of an inductor, a second switch connected between the first side of the inductor and a ground, a third switch connected between a second side of the inductor and the ground, and a fourth switch connected between the second side of the inductor and a capacitor. The power converter may further include a comparator configured to compare an output voltage at the capacitor to a threshold voltage and based on the result of the comparison selectively activate or deactivate the first, second, third, and fourth switches in a power cycle.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: October 20, 2020
    Assignee: ATLAZO, INC.
    Inventors: Farsheed Mahmoudi, Hajir Hedayati, Masoud Ensafdaran, Bardia Pishdad, Monib Ahmed, Tamer Kafafi, Salem Emara
  • Patent number: 10804813
    Abstract: A power inverter includes primary switches, a transformer, a rectifier, a high voltage (HV) bus, an H-bridge, a detector, and a feedback controller. The transformer receives a switched direct current (DC) signal from a battery. The H-bridge outputs an AC signal to a stepped load. The detector detects a step-up load change by monitoring the stepped load. The feedback controller regulates a duty cycle of the AC signal, thereby reducing total harmonic distortion (THD) affecting the power inverter and the stepped load. The feedback controller further regulates the duty cycle of the AC signal by temporarily setting the primary switching duty cycle at a maximum allowable level in response to the step-up load change.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: October 13, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Gang Jin, Karl Wojcik
  • Patent number: 10795395
    Abstract: A bandgap voltage reference circuit includes an amplifier, a voltage buffer, a first transistor, a first resistor, a second transistor, a second resistor, and a leakage current. The input terminals of the amplifier are coupled to a first reference node and a second reference node respectively. The voltage buffer is coupled to the output terminal of the amplifier for outputting a bandgap reference voltage. The first transistor is coupled to the first reference node, the second first resistor, and can receive the bandgap reference voltage. The second resistor is coupled to the first resistor and a system voltage terminal. The second transistor is coupled to the second reference node, the first resistor, and can receive the bandgap reference voltage. The leakage current compensation element is coupled to the second transistor and the system voltage terminal. A size of the first transistor is greater than the second transistor.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: October 6, 2020
    Assignee: eMemory Technology Inc.
    Inventor: Chih-Chun Chen
  • Patent number: 10784785
    Abstract: A switch-mode power supply includes a power transistor, a transformer, and detection circuitry. The transformer includes a primary winding that is coupled to a drain terminal of the power transistor. The detection circuitry is coupled to a source terminal of the power transistor. The detection circuitry is operable to monitor signal present on the drain terminal via parasitic drain-source capacitance of the power transistor while the power transistor is switched off, and to detect demagnetization of a secondary winding of the transformer via the monitored signal.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 22, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Salvatore Giombanco, Filippo Marino
  • Patent number: 10775818
    Abstract: Voltage regulator circuitry, comprising: a pull-up path connected between a high-voltage supply and an output node for supplying a pull-up current from the high-voltage supply to the output node; a pull-down path connected between the output node and a low-voltage supply for drawing a pull-down current from the output node to the low-voltage supply; and a controller comprising pull-up control circuitry operable to control the pull-up current and pull-down control circuitry operable to control the pull-down current, so as to regulate an output voltage signal provided at the output node at a target voltage level even when an output current drawn from the output node along an output current path by a load varies over a range of positive and negative values, wherein the pull-down control circuitry is operable to: obtain measures of the pull-up current; and control the pull-down current based on the measures using at least one of proportional, integral and derivative control.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: September 15, 2020
    Assignee: SOCIONEXT INC.
    Inventor: Dierk Tiedemann
  • Patent number: 10768650
    Abstract: A voltage regulator and a method for regulating an output voltage are presented. The voltage regulator includes a frequency compensation circuit having a first capacitor coupled to a capacitance multiplier. The capacitance multiplier has a second capacitor coupled to a voltage amplifier. The voltage amplifier amplifies a first voltage that is a function of the output voltage. The advantage of this regulator and method is that it allows increasing the total capacitance of the frequency compensation circuit without unduly increasing the size of the regulator. Another advantage is the allowance of changing the amplification factor without affecting the DC gain.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: September 8, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventor: Chi-Chia Huang
  • Patent number: 10770894
    Abstract: A power loss protection integrated circuit includes a VIN terminal, a VOUT terminal, an STR terminal, a switch circuit (eFuse), a control circuit, and a prebiasing circuit. In a normal mode, current flows from a power source, into VIN, through the eFuse, out of VOUT, and to the output node. A switching converter of which the control circuit is a part is disabled. If a switch over condition then occurs, the eFuse is turned off and the switching converter starts operating. The switching converter receives energy from STR and drives the output node. Switch over is facilitated by prebiasing. Prior to switch over, the prebiasing circuit prebiases a control loop node as a function of eFuse current flow prior to switch over. When the switching converter begins operating, the node is already prebiased for the proper amount of current to be supplied by the switching converter onto the output node.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 8, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Hue Khac Trinh, Hiroshi Watanabe
  • Patent number: 10763668
    Abstract: A converter is provided. The converter is capable of generating a loading current at an output node. The converter includes a high efficiency power channel and a fast transient response channel. The high efficiency power channel and the fast transient response channel share an inductor that is coupled to the output node. The high efficiency power channel has an additional inductor that is connected in series with the inductor coupled to the output node.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 1, 2020
    Assignee: MediaTek Inc.
    Inventors: Hua-Chiang Huang, Chih-Chen Li
  • Patent number: 10756632
    Abstract: A DC power supply includes a point-of-load (PoL) regulator providing power to a load with a desired efficiency only when a PoL input voltage is in a first sub-range of a specified larger system input voltage range. The supply has an auxiliary circuit with an output in series with the supply input, generating an auxiliary voltage and adding it to the DC supply voltage to form a boosted supply voltage. Switching circuitry connects the supply input to the PoL input to apply a DC supply voltage as the PoL input voltage when the supply voltage is in the first sub-range, and connects the output of the auxiliary circuit to the PoL input to apply the boosted supply voltage as the PoL input voltage when the supply voltage is outside the first sub-range, maintaining the PoL input voltage within the first sub-range.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: August 25, 2020
    Assignee: Bel Fuse (Macao Commerical Offshore) Limited
    Inventor: Giorgio Augusto Mauri
  • Patent number: 10749440
    Abstract: A power conversion device includes an input detector for detecting input parameters of the DC input to the inverter; an output detector for detecting output parameters of the DC output from the power converter device; a duty calculator for calculating a duty for the switching elements of the inverter; a frequency search range calculator for determining an upper limit and a lower limit of a frequency search range for determining the drive frequency after the operating condition is changed, using at least one parameter of the input parameters, the output parameters, and a duty parameter; and a frequency search processor for determining the drive frequency by searching the frequency search range.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: August 18, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hajime Toyoda, Takaaki Takahara, Ryota Kondo, Hiroyasu Iwabuki
  • Patent number: 10749432
    Abstract: A voltage converter includes a low dropout regulator voltage converter circuit. The voltage converter generates three voltages (e.g., 1.2 volts, 2.5 volts, and 1.8 volts) for an electronic system, which can be a smartphone or electronic tablet or other device. An implementation has at least one charge pump voltage converter circuit. The low dropout regulator voltage converter circuit provides an output voltage based on its input voltages and can operate with a very small input-to-output differential voltage. Compared to using a Buck converter, a low dropout regulator does not have an external inductor, which saves space. An implementation of the voltage converter can also include at least one charge pump voltage converter circuit to generate a voltage of the voltage converter.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: August 18, 2020
    Assignee: IML International
    Inventors: Alberto Giovanni Viviani, Dimitry Goder