Patents Examined by Hahn Phan
  • Patent number: 10735130
    Abstract: In one embodiment, a first group of splitters receives a group of signals from a group of transmitters. Each splitter in the first group of splitters splits a signal into a plurality of signals that are sent to a plurality of multiplexers. A multiplexer in the plurality of multiplexers receives one of the plurality of signals from each splitter in the group of splitters and multiplexes the received one of the plurality of signals into a multiplexed signal. The multiplexer sends the multiplexed signal through a single connection in which upstream signals are sent to a group of nodes and downstream signals are received from the group of nodes. A de-multiplexer de-multiplexes the multiplexed signal into the group of signals and sends the group of signals to the group of nodes via a second group of splitters that are connected to the group of nodes.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: August 4, 2020
    Assignee: ARRIS Enterprises LLC
    Inventors: Zoran Maricevic, Kevin P. Orazietti, Hui Fang, John O. Caezza
  • Patent number: 10243659
    Abstract: An optical transceiver that provides an optical module, a circuit board, and a housing, where the housing encloses the optical module and the circuit board therein. The optical module provides lead terminals connected with circuits on the circuit board through a flexible printed circuit (FPC) board. The FPC board is bent at a bent portion corresponding to an end of the optical module as the top surface thereof becomes inner. The bent portion of the FPC board provides a bared portion in the back surface thereof, where the bared portion removes a ground pattern.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: March 26, 2019
    Assignee: SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.
    Inventor: Shinta Kasai
  • Patent number: 10084545
    Abstract: A distributed traveling-wave Mach-Zehnder modulator driver having a plurality of modulation stages that operate cooperatively (in-phase) to provide a signal suitable for use in a 100 Gb/s optical fiber transmitter at power levels that are compatible with conventional semiconductor devices and conventional semiconductor processing is described.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: September 25, 2018
    Assignee: Elenion Technologies, LLC
    Inventors: Ran Ding, Thomas Wetteland Baehr-Jones, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 9729238
    Abstract: A switched wireless system is used to increase the range of peer-to-peer communications. The optically-switched fiber optic communication system includes a head-end unit (HEU) having a switch bank. Cables couple the HEU to one or more remote access points in different coverage areas. The switch bank in the HEU provides a link between the remote access points in the different coverage areas such that devices in the different cellular coverage areas communicate with each other, such as through videoconferencing. By using the switched communication system, the range and coverage of communication between devices may be extended such that devices in different coverage areas and devices using different communication protocols can communicate.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: August 8, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Michael Sauer, Dean Michael Thelen
  • Patent number: 9578710
    Abstract: A wavelength sensing lighting system that may comprise a light source included in an array to emit illuminating light, the array including a plurality of light sources, a sensor included in the array configured to sense environmental light from an environment, and a controller operatively connected to each of the sensor and the light source and may be configured to analyze the environmental light sensed by the sensor to at least one of detect and generate data relating to a condition of the environment, the data being transmittable in a data light. The controller may be configured to receive the data included in the data light using the sensor. The controller may be configured to analyze the data and to control the transmission of the data light from the light source.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: February 21, 2017
    Assignee: Environmental Light Technologies Corporation
    Inventors: Fredric S. Maxik, Eric Bretschneider, Pedro Medelius, David E. Bartine, Robert R. Soler, Gregory Flickinger
  • Patent number: 9323710
    Abstract: A system and a method are disclosed for receiving an infrared signal on a mobile device. The mobile device receives an infrared signal by creating an intermediate bitstream based on the received infrared signal. The intermediate bitstream is trimmed, downsampled, and demodulated in the time domain. The intermediate bitstream is then converted into a raw infrared code. The received bitstream is processed in a software layer, enabling the mobile device to process infrared signals without the use of additional hardware configured on the mobile device.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: April 26, 2016
    Assignee: Peel Technologies, Inc.
    Inventors: Samyeer Suresh Metrani, Siva Subramanian Muthukumarasamy
  • Patent number: 9054955
    Abstract: Apparatus for enabling recovery from failures in up to M working paths of a set of N working paths that are allocated N frequency slots of L different slot widths, where M, N and L are positive integers, N?L>1, and N>M>1. The apparatus includes a processor and a control plane interface. The processor is operative to allocate protection frequency slots to M protection paths in different manners depending on whether M is greater than L, equal to L or less than L. The control plane interface is operatively associated with the processor and is operative to effect provisioning of the M protection paths for supporting recovery from the failures. Related network, apparatus and methods are also disclosed.
    Type: Grant
    Filed: December 30, 2012
    Date of Patent: June 9, 2015
    Inventor: Doron Handelman
  • Patent number: 8934783
    Abstract: An Ethernet adapter system may include a transmitter to insert a payload type identifier sequence in a generic frame procedure header to indicate that a network is a converged enhanced Ethernet network. The transmitter may insert idle sequences in a stream of data frames transmitted along a link. The system may include a receiver to recognize a condition and to force a loss of synchronization condition on the link that will be converted by the receiver into a loss of light condition. The receiver may scan the transmitted stream of data frames for invalid data frames and introduce a code into the stream of data frames whenever an invalid data frame is detected.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Casimer M. DeCusatis, Thomas A. Gregg, Rajaram B. Krishnamurthy
  • Patent number: 8886043
    Abstract: The disclosure provides an optical network system, an Optical Line Terminal (OLT), an Optical Network Unit (ONU) and an Optical Distribution Network (ODN) apparatus. The system includes: an OLT configured to modulate and encode at least one line of time-division-multiplexed downlink signals, synthesize the downlink signals encoded into one line and then output it, receive uplink signals, and decode the uplink signals received and then output them; an ODN configured to separate the downlink signals received into multiple lines and then output them, synthesize the uplink signals received into one line, and then output it to the OLT; and ONUs configured to receive the downlink signals output from the ODN, decode the downlink signals received and output them, encode one line of time-division-multiplexed uplink signals, and output the uplink signals encoded to the ODN. Decoding of the downlink signals and encoding of the uplink signals can further be implemented by the ODN.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 11, 2014
    Assignee: ZTE Corporation
    Inventors: Biao Chen, Liang Cheng, Dawei Wang, Songlin Zhu, Dan Geng
  • Patent number: 8687968
    Abstract: A vector sum phase shifter includes a 90° phase shifter (1) which generates an in-phase signal (VINI) and a quadrature signal (VINQ) from an input signal (VIN), a four-quadrant multiplier (2I) which changes the amplitude of the in-phase signal (VINI) based on a control signal (CI), a four-quadrant multiplier (2Q) which changes the amplitude of the quadrature signal (VINQ) based on a control signal (CQ), a combiner (3) which combines the in-phase signal (VINI) and the quadrature signal (VINQ), and a control circuit (4). The control circuit (4) includes a voltage generator which generates a reference voltage, and a differential amplifier which outputs the difference signal between a control voltage (VC) and the reference voltage as the control signal (CI, CQ). The differential amplifier performs an analog operation of converting the control voltage (VC) into the control signal (CI, CQ) similar to a sine wave or a cosine wave.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: April 1, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hideyuki Nosaka, Munehiko Nagatani, Shogo Yamanaka, Kimikazu Sano, Koichi Murata, Kiyomitsu Onodera, Takatomo Enoki
  • Patent number: 7653311
    Abstract: Part of an inputted optical add signal 118 is reflected by a mirror 117, and is thereby inputted into an optical wavelength multiplexer 105 in the reverse direction so that the optical add signal is returned to paths 115-1 through 115-16 corresponding to wavelengths ?1 through ?16. If the returned optical add signal is an optical add signal having a correct wavelength, the optical signal enters its corresponding backward direction optical detector 113-16. Accordingly, it is possible to check whether or not a wavelength of the optical add signal is correct.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: January 26, 2010
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Nobuhiko Kikuchi, Kenro Sekine, Shinya Sasaki
  • Patent number: 7330662
    Abstract: The extended range of optical data communication is enabled through the use of intermediary relay stations spaced fairly far apart. IRDA communicatiOn, as is well known, uses very short duration optical pulses to send data up to 1 Mbit/sec; this has the concomitant effect of minimizing LED duty cycle and preventing excessive heating. The invention uses a number of integrated pulses to represent a single bit instead of utilizing a one-to-one correspondence between pulses and bits. Processing software causes the transmitter to “stutter” or repetitively emanate the identical pulse representing a bit of information. Sufficient photons are thereby gathered at a receiver to reach a predetermined threshold. A tradeoff of the data transmission frequency in this invention is that as signal intensity drops by a factor of 100 when distance increases by a factor of 10 yielding a distance/intensity ratio of 1/10.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: February 12, 2008
    Assignee: International Business Machines Corporation
    Inventor: Thomas G. Zimmerman
  • Patent number: 7035540
    Abstract: An optical fiber ring network includes a plurality of interconnected nodes, each pair of neighboring nodes being interconnected by a pair of optical links. Using coarse wavelength division multiplexing, data is transmitted in both directions over each link, using a first wavelength ?1 to transmit data in a first direction over the link and a second wavelength ?2 to transmit data in a second, opposite direction over the link. The two wavelengths ?1 and ?2 differ by at least 10 nm. Each of the data streams transmitted over the optical link has a bandwidth of at least 2.5 Gbps. Further, each data stream has at least two logical streams embedded therein. A link multiplexer at each node of the network includes one or more link cards for coupling the link multiplexer to client devices, and one or more multiplexer units for coupling the link multiplexer to the optical links.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: April 25, 2006
    Assignee: CIENA Corporation
    Inventors: Christopher D. Finan, Mark Farley
  • Patent number: 6525855
    Abstract: An optical communications network includes a terminal which can simultaneously receive and modulate an optical signal. The terminal includes an optical modulator which is controlled by varying the bias voltage applied to it.
    Type: Grant
    Filed: April 2, 1998
    Date of Patent: February 25, 2003
    Assignee: British Telecommunications public limited company
    Inventors: Leslie D Westbrook, David G Moodie
  • Patent number: 6111678
    Abstract: Millimeter-wave optical source intended for a distribution network of radio over fiber type.This source comprises a laser (2) coupled to at least one optical fiber (4) to distribute radio signals over fiber, means (12) of controlling the laser so that the latter generates a millimeter-wave carrier, and a dispersive medium (6) coupled to the laser able to shift the carrier phase and consequently an absorption peak appearing in the optical fiber.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: August 29, 2000
    Assignee: France Telecom
    Inventors: Dean Mathoorasing, Christophe Kazmierski