Patents Examined by Heng Chan
  • Patent number: 8852777
    Abstract: A method for preparing a redox flow battery electrolyte is provided. In some embodiments, the method includes the processing of raw materials containing sources of chromium ions and/or iron ions. The method further comprises the removal of impurities such as metal ions from those raw materials. In some embodiments, a reductant may be used to remove metal impurities from an aqueous electrolyte containing chromium ions and/or nickel ions. In some embodiments, the reductant is an amalgam. In some embodiments, the reductant is a zinc amalgam. Also provided is a method for removing ionic impurities from an aqueous acid solution. Further provided a redox flow battery comprising at least one electrolyte prepared from the above-identified methods.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 7, 2014
    Assignee: Deeya Energy, Inc.
    Inventors: Majid Keshavarz, Aravamuthan Varadarajan
  • Patent number: 8841015
    Abstract: A battery pack includes at least one battery module comprising a plurality of unit cells stacked together; and at least one thermoelectric module on the at least one battery module, wherein the thermoelectric module may include a Peltier device having an input terminal configured to receive a polarity-convertible current.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: September 23, 2014
    Assignees: Samsung SDI Co., Ltd., Robert Bosch GmbH
    Inventor: Ji-Hyoung Yoon
  • Patent number: 8835062
    Abstract: An enclosed separator unit for incorporation into a gas supply device of a fuel cell system, to separate liquid from the gas supply device, includes a separator for separating the liquid. A housing encloses the separator unit which is arranged in a gas space 21 in the housing and/or is in thermal contact with the gas space. A line system is provided for discharging the liquid from the separator, and at least one fluid dynamically active functional component is arranged in the line system, in the gas space 21.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: September 16, 2014
    Assignee: Daimler AG
    Inventors: Thomas Baur, Werner Englert, Dietmar Mirsch, Hans-Joerg Schabel
  • Patent number: 8822089
    Abstract: A fuel cell is operated with high power such that which a humidified gas and a dry gas are selectively supplied as oxidant to a cathode of the fuel cell. This method includes (S1) supplying a humidified gas while a power is constantly maintained or until the power begins to decrease; (S2) after supplying the humidified gas, supplying a dry gas to obtain a greater power than an average power of the step (S1); and (S3) after obtaining a predetermined power in the step (S2), repeatedly supplying a humidified gas in case the power decreases and supplying a dry gas in case the power decreases again afterwards, thereby increasing the power such that the predetermined power is maintained. This method provides an optimal operating condition to a fuel cell, thereby ensuring a high power.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: September 2, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Tae-Geun Noh, Won-Ho Lee
  • Patent number: 8815442
    Abstract: The invention relates to an electrode comprising (a) an electron collector containing one or more transition metals from the groups 4 to 12 of the Periodic Classification of the Elements, and (b) a material that is electrochemically active, present on the surface of the electron collector in the form of a nano-structured conversion layer containing nano-particles or agglomerates of said nano-particles, wherein the nano-particles have a mean diameter of between 1 and 1000 nm, preferably between 10 and 300 nm, wherein said electrochemically active material contains at least one compound of the transition metal or transition metals present in the electron collector, characterized by the fact that the electrode is a textile formed by metallic wires or fibers. The invention also relates to a half-accumulator and an accumulator containing such a textile electrode.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 26, 2014
    Assignee: Electricite de France
    Inventors: Elodie Vidal, Stephane Lascaud
  • Patent number: 8808655
    Abstract: Immobilized nitronyl nitroxide active sites on the surface of a porous inorganic oxide support act as efficient and rapid oxidants for NO, reacting with >99% of the NO under flow conditions through a packed bed; and, in a parallel configuration with nitroxyl radical active sites, act to remove >99% of both NO and NO2 from a gas mixture, with >95% of the active sites participating in NOx trapping.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: August 19, 2014
    Assignee: The Regents of the University of California
    Inventors: Andrew Solovyov, Alexander Katz, Enrique Iglesia
  • Patent number: 8790842
    Abstract: Fuel cell systems and methods having reduced volumetric requirements are described. The systems include, among other things, an enclosed region formed by the bonding of a fuel cell layer with a fluid manifold. The enclosed region transforms into a fluid plenum when, for example, a fluid exiting a manifold outlet pressurizes the enclosed region causing one or more portions of the fuel cell layer and/or the fluid manifold to deform away from each other.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 29, 2014
    Assignee: Societe BIC
    Inventors: Jeremy Schrooten, Paul Sobejko, Gerard F McLean
  • Patent number: 8785020
    Abstract: Disclosed is an anode for a lithium secondary battery. The anode includes a current collector in the form of a wire and a porous anode active material layer coated to surround the surface of the current collector. The three-dimensional porous structure of the active material layer increases the surface area of the anode. Accordingly, the mobility of lithium ions through the anode is improved, achieving superior battery performance. In addition, the porous structure allows the anode to relieve internal stress and pressure, such as swelling, occurring during charge and discharge of a battery, ensuring high stability of the battery while preventing deformation of the battery. These advantages make the anode suitable for use in a cable-type secondary battery. Further disclosed is a lithium secondary battery including the anode.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: July 22, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Je-Young Kim, Ki-Tae Kim, Heon-Cheol Shin, Hyung-Man Cho, Hye-Ran Jung
  • Patent number: 8748050
    Abstract: Embodiments of the present invention relate to a portable fuel cell power source including an expandable enclosure, a first reactant contained within the enclosure, one or more fuel cells and a fluid port positioned in the expandable enclosure and adapted to be in fluidic communication with the one or more fuel cells. The enclosure may also include an opening to insert a second reactant. When the first reactant is contacted with the second reactant a fuel is generated for use with one or more of the fuel cells. The volume of the portable fuel cell power source in a collapsed state may be smaller than the volume of the amount of first reactant and second reactant needed to substantially consume the first reactant in a fuel generation reaction.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: June 10, 2014
    Assignee: Societe BIC
    Inventors: Gerard F McLean, Joerg Zimmermann, Jeremy Schrooten
  • Patent number: 8741465
    Abstract: A battery cooling structure includes: a battery provided in a luggage room of a vehicle; an air intake duct, including an air inlet open in a vehicular cabin, for supplying air in the vehicular cabin to the battery as cooling air; and a partition panel standing away from a rear seat with a clearance therebetween so as to section the luggage room and the vehicular cabin and provided with a duct hole in which the air intake duct is inserted. The partition panel is provided with an air exhaust hole for exhausting air in the luggage room to the vehicular cabin. The air exhaust hole is formed at a location spaced away from the duct hole. Such a configuration provides a battery cooling structure suppressing an adverse effect caused by exhaust of heated cooling air.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: June 3, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuichi Nagata, Shuji Nagase
  • Patent number: 8703083
    Abstract: Immobilized nitronyl nitroxide active sites on the surface of a porous inorganic oxide support act as efficient and rapid oxidants for NO, reacting with >99% of the NO under flow conditions through a packed bed; and, in a parallel configuration with nitroxyl radical active sites, act to remove >99 % of both NO and NO2 from a gas mixture, with >95% of the active sites participating in NOx trapping.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: April 22, 2014
    Assignees: The Regents of the University of California, Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Andrew Solovyov, Alexander Katz, Enrique Iglesia, Paul Timothy Fanson
  • Patent number: 8691453
    Abstract: Even if a failure occurs in a bypass valve during low-efficiency power generation, the occurrence of an excessive stoichiometry ratio in a fuel cell can be prevented. An output from a pressure sensor or a current sensor is monitored by a control device, and when a failure associated with a closed-valve malfunction of the bypass valve occurs, the degree of opening of the pressure regulating valve is increased to increase an amount of cathode-off gas exhaust, and a revolution speed of an air compressor is reduced to an amount of air discharged by the air compressor, thereby preventing an excessive stoichiometry ratio in the fuel cell.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: April 8, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoki Kanie, Yoshiaki Naganuma, Tomoya Ogawa
  • Patent number: 8673515
    Abstract: A system and method for preventing anode reactant starvation. The system includes a hydrogen source, an anode bleed valve, and a cell voltage monitor. The system also includes an anode sub-system pressure sensor and a controller configured to control the anode sub-system. The controller determines the average cell voltage and estimates the hydrogen molar fraction and/or nitrogen molar fraction in the anode sub-system. The controller also receives measurement data from the cell voltage monitor and the pressure sensor, and determines whether there is a decrease in the minimum cell voltage in response to changes in the anode pressure. If the controller detects a decrease in the minimum cell voltage in response to changes in the anode pressure, the controller corrects for the decrease by increasing anode pressure and/or by decreasing the molar fraction of nitrogen in the anode sub-system.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: March 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel I. Harris, Matthew A. Lang, Daniel C. Di Fiore
  • Patent number: 8665572
    Abstract: The present invention relates to a battery charge/discharge protection circuit that protects an associated battery from charge/discharge damage. The charge/discharge protection circuit includes a first terminal, a second terminal, a charge over-current detection circuit, a discharge over-current detection circuit, a short circuit detection circuit, and a PMOS transistor. A drain electrode and a gate electrode of the PMOS transistor are connected to the first terminal and the second terminal respectively. A source electrode of the PMOS transistor is connected to the charge over-current detection circuit, the discharge over-current detection circuit and the short circuit detection circuit, such that when a voltage above an overvoltage threshold is supported by the charger, the voltage of the source electrode of the PMOS transistor is maintained above a negative threshold voltage and the elements in these circuits do not receive such a voltage output by the charger.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: March 4, 2014
    Assignee: Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.
    Inventor: Zutao Liu
  • Patent number: 8637210
    Abstract: A first layered article (14a) in which a first electrolyte membrane (12a) and an anode-side catalyst layer (13a) are laminated, and a second layered article (14b) in which a second electrolyte membrane (12b) and a cathode-side catalyst layer (13b) are laminated, are formed. Then, the first layered article (14a) and the second layered article (14b) are disposed so that the electrolyte membrane-side surfaces of the two articles face each other. A reinforcement frame (20) is then disposed between the two articles. The whole layered assembly in this state is thermocompression-bonded. Thus, a membrane-electrode assembly (15) in which the reinforcement frame (20) is embedded within an electrolyte membrane (15) that is formed by the fusion of first electrolyte membrane (12a) and the second electrolyte membrane (12b) is obtained.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 28, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihiro Hori, Yoshito Endo
  • Patent number: 8623559
    Abstract: A fuel cell system for an aircraft is stated, which fuel cell system comprises a fuel cell unit and a suction module. The suction module is used to draw oxygen through the fuel cell unit. No vacuum generators are used during cruising flight.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: January 7, 2014
    Assignee: Airbus Operations GmbH
    Inventors: Lars Frahm, Ulrich Rieger, Claus Hoffjann, Hansgeorg Schuldzig
  • Patent number: 8617301
    Abstract: Compositions and methods for depositing elemental metal M(0) films on semiconductor substrates are disclosed. One of the disclosed methods comprises: heating the semiconductor substrate to obtain a heated semiconductor substrate; exposing the heated semiconductor substrate to a composition containing a metal precursor, an excess amount of neutral labile ligands, and a supercritical solvent; exposing the metal precursor to a reducing agent and/or thermal energy at or near the heated semiconductor substrate; reducing the metal precursor to the elemental metal M(0) by using the reducing agent and/or the thermal energy; and depositing the elemental metal M(0) film while minimizing formation of metal oxides.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: December 31, 2013
    Assignee: Lam Research Corporation
    Inventor: Mark Ian Wagner
  • Patent number: 8597422
    Abstract: The present invention relates to a light, biodegradable, organic pigment and filler, and a method of manufacturing it. According to the present invention, a solution comprising a starch derivative is first prepared by dissolving the starch derivative into a suitable solvent, and, after that, the solution is brought into contact with a non-solvent to precipitate the starch derivative from the solvent, and, as a result, a dispersion is obtained, one which comprises a precipitate consisting of starch derivative and a liquid phase formed of the solvent and the non-solvent, after which the solvent is removed from the liquid phase and the precipitate is separated from the non-solvent and recovered. The present invention can be used to manufacture both a product comprising 100-300 nm spherical particles, which is suitable for use as a pigment, and a coral-like, porous product which is particularly suitable as a filler.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: December 3, 2013
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Soili Peltonen, Hannu Mikkonen, Pia Qvintus-Leino, Petri Varjos, Kirsi Kataja
  • Patent number: 8597432
    Abstract: A material which is suitable as filler or coating pigment for a fibrous web and a method for manufacturing thereof. According to the method, a feed comprising organic polymer material is cooled to at least approximately ?50° C., after which it is refined in a jet refiner to a desired particle size. The present invention generates uniform pigment particles which comprise, for instance, starch esters, and which particles have a porous surface structure, in which case they are suitable for instance as coating pigments and fillers for offset and ink-jet papers.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: December 3, 2013
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Hannu Mikkonen, Mauno Miettinen, Kirsi Kataja, Saija Luukkanen, Soili Peltonen, Pia Qvintus-Leino
  • Patent number: 8557436
    Abstract: A mounting arrangement for a battery pack in a vehicle including the battery pack and a vehicle body, the battery pack including a housing having a hollow interior and a battery assembly disposed in the hollow interior of the housing, wherein the battery assembly includes at least one battery cell and a plurality of rails coupled thereto, and the vehicle body including support rails and a compartment formed therein to receive the battery pack therein, wherein the compartment of the vehicle body supports the housing and the support rails support the rails of the battery assembly to divide a vertical load of the battery pack.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: October 15, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Leo F. Schwab