Patents Examined by Hezron Willams
  • Patent number: 7024930
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: April 11, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Jean-Marc Follini, Julian Pop
  • Patent number: 6601435
    Abstract: A method for estimating a friction coefficient between a tire of a vehicle and a road surface, which may be used in obtaining a safety distance for an adaptive vehicle, estimating the friction coefficient by using state variables that are measured by means of RPM sensors normally equipped on vehicles. A device for estimating a friction coefficient has a control section receiving signals from a braking/steering monitoring section and outputting the friction coefficient stored in a friction coefficient value storage when both or either of a braking action and a steering action are applied to the vehicle, and outputting the friction coefficient estimated by a friction coefficient estimator when the braking action and the steering action are not applied to the vehicle.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: August 5, 2003
    Assignee: Hyundai Motor Company
    Inventor: Jin-Ho Hong
  • Patent number: 6467350
    Abstract: A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: October 22, 2002
    Assignee: The Regents of the University of California
    Inventors: Gregory Kaduchak, Dipen N. Sinha