Patents Examined by Hoang Q Tran
  • Patent number: 11966085
    Abstract: An optical transceiver includes an input assembly, an output port, a fiber patch panel, multiple first optical fibers and multiple second optical fibers. The input assembly is arranged on a circuit board and has a first input port and a second input port. The fiber patch panel is arranged between the input assembly and the output port, and has multiple first fiber patch slots and multiple second fiber patch slots. The first optical fibers are connected to the first input port and the output port. The first optical fiber passes through the first fiber patch slot and the second fiber patch slot. The second optical fibers are connected to the second input port and the output port. The second optical fiber passes through the first fiber patch slot and the second fiber patch slot. The second fiber patch slot accommodates the first optical fiber and the second optical fiber.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: April 23, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chen-Mao Lu, Wei-Chan Hsu, Chun-Yen Chen
  • Patent number: 11960118
    Abstract: The present invention relates of a photonic integrated and a method of fabricating a photonic integrated chip, PIC, configured for alignment and attachment of a laser diode in a predetermined position in which light from the laser diode is aligned with an input of the PIC; wherein the photonic chip comprises an asymmetric alignment assembly for receiving and aligning the laser diode in the predetermined position; and wherein the input comprises a coupler for receiving a laser beam from the laser diode in use.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: April 16, 2024
    Assignee: ADVANCED MICRO FOUNDRY PTE. LTD.
    Inventors: Chao Li, Patrick Guo-Qiang Lo
  • Patent number: 11953748
    Abstract: A cassette configured for the installation in a fiber enclosure system. The cassette includes a base, a first wall including a first front post, a second wall including a second front post, and a front wall with an opening including an adapter configured to connect to at least one fiber optic cable. The cassette further includes a latch located on the first wall configured to releasably connect the cassette to the fiber enclosure system, where a cassette lock is configured to retract the latch when the lock is actuated away from a rear of the cassette and deploy the latch when the lock is actuated toward the rear of the cassette.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: April 9, 2024
    Assignee: Panduit Corp.
    Inventors: Benjamin J. Berridge, Joseph E. Sanders
  • Patent number: 11934019
    Abstract: A light coupling unit includes a first major surface comprising one or more substantially parallel first grooves oriented along a first direction for receiving one or more optical waveguides. A second major surface for slidably contacting a mating light coupling unit comprises an optically transmitting window for propagating an optical signal therethrough, and a region of second grooves and lands configured to capture particulate contaminants in the second grooves.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 19, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: James M. Nelson, Michael A. Haase, Terry L. Smith
  • Patent number: 11934024
    Abstract: A telecommunications chassis comprises a cable sealing portion defining at least one cable opening configured to sealably receive a cable and a module mounting portion extending from the cable sealing portion, which further comprises a housing defining an open front closable by a door to define an interior, a rear wall, a right wall, and a left wall. A plurality of module mounting locations is provided in a vertically stacked arrangement, each configured to receive a telecommunications module through the open front. An exterior of the housing includes a first column of radius limiters defining curved profiles for guiding cables from the front toward the rear with bend control. A second column of radius limiters in the form of spools is spaced apart and generally parallel to the first column of radius limiters and a third column of radius limiters, at least some of which are in the form of spools, is also spaced apart and generally parallel to the first and second columns of radius limiters.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: March 19, 2024
    Assignee: CommScope Technologies LLC
    Inventors: James J. Solheid, Kristofer Bolster, Soutsada Vongseng, Thomas G. LeBlanc
  • Patent number: 11921337
    Abstract: A sealing unit for a cabinet containing optical components. A gasket defines a plurality of apertures configured to provide a seal around a plurality of optical fiber cables, wherein the gasket has an interior side intended to face the interior of the cabinet and an exterior side intended to face an exterior of the cabinet. A first retaining device is located on the interior side of the gasket, and a second retaining device is located on the exterior side of the gasket. The first and second retaining devices each include a plurality of channels, wherein each channel is aligned with a respective aperture of the gasket and each channel is configured to receive one of the plurality of optical fiber cables. Each channel has a profile defined by a plurality of protruding surfaces configured to restrain longitudinal movement of an optical fiber cable received therein.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: March 5, 2024
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Sergio Lanzone, Sergio Mosti, Claudio D'IncĂ , Angelo Rivara, Marco Assale
  • Patent number: 11914196
    Abstract: An optical ferrule assembly includes a hybrid optical ferrule having a glass portion assembled to a polymeric portion. The polymeric portion includes a groove for receiving and supporting an optical fiber having opposing open front and back ends. A light redirecting member includes an input surface for receiving light from the optical fiber and a light redirecting side. The open back end of the groove and the input surface define a recessed region therebetween. The glass portion includes an optically transparent glass insert disposed in the recessed region conforming in shape to an internal shape of the recessed region. An optical fiber is received and supported in the groove. The optical fiber includes a fiber end laser welded to the glass insert so that a central light ray from the optical fiber propagates through the glass insert before being received and redirected by the light redirecting side.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: February 27, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Changbao Ma, James M. Nelson, Michael A. Haase
  • Patent number: 11906795
    Abstract: A fiber optical connector assembly with a crimp tube assembly improves tensile load on the optical fiber cable or microduct jacket when the connector assembly is used as part of an optical network that is secured between towers spaced apart 1,000 meters or more. The crimp tube assembly has one or more crimp zones, and the crimp tube assembly has a lip formed on an inner surface of the crimp right assembly to improve tensile strength when the crimp tube assembly is secured to a back post of a first fiber optic connector assembly that is air blown or push through a duct or conduit. An epoxy resin may be injected into a cavity between the cable jacket and the crimp tube assembly to improve tensile load strength.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: February 20, 2024
    Assignee: Senko Advanced Components, Inc.
    Inventors: Guanpeng Hu, Anthony Croxford, Man Kit Joe Wong
  • Patent number: 11899264
    Abstract: A connector includes a first light transmission part and a second light transmission part, and when the connector is connected to an optical component, observing, by using the first light transmission part and the second light transmission part on an equipment room side, a detection light to identify the connector, and identifying an output port through which a user-side optical network unit (ONU) is connected to an equipment-room-side splitter.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: February 13, 2024
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yuanyuan Li, Biao Qi, Xiupeng Li
  • Patent number: 11892691
    Abstract: A hermetic optical fiber alignment assembly includes a ferrule portion having a plurality of grooves receiving the end sections of optical fibers, wherein the grooves define the location and orientation of the end sections with respect to the ferrule portion. The assembly includes an integrated optical element for coupling the input/output of an optical fiber to the opto-electronic devices in the opto-electronic module. The optical element can be in the form of a structured reflective surface. The end of the optical fiber is at a defined distance to and aligned with the structured reflective surface. The structured reflective surfaces and the fiber alignment grooves can be formed by stamping.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: February 6, 2024
    Assignee: Senko Advanced Components, Inc.
    Inventors: Shuhe Li, Robert Ryan Vallance, Michael K. Barnoski, King-Fu Hii
  • Patent number: 11886012
    Abstract: An object of the present invention is to provide a versatile optical fiber lateral output device that can deal with various types of optical fiber core wires. An optical fiber input-output device according to the present invention includes: a first jig 11 including a recess portion 22 and an optical input-output means 51; a second jig 12 including a projection portion 23 and a guide groove 24; and a pressing unit 14 configured to apply a pressing force in a direction in which the recess portion 22 of the first jig 11 and the projection portion 23 of the second jig 12 approach each other so as to bend an optical fiber core wire 100. Letting R1 be a curvature radius of the recess portion 22 of the first jig 11, ?1 be a central angle of the recess portion 22, R2 be a curvature radius of the projection portion 23 of the second jig 12, and ?2 be a central angle of the projection portion 23, R2?R1 and ?2??1 are satisfied.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: January 30, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takui Uematsu, Hidenobu Hirota, Hiroyuki Iida, Naotsugu Ambe
  • Patent number: 11886016
    Abstract: A fiber optic connector has at least two optical fibers therein have end faces that are positioned such that they are directed in different directions. The end faces can be oriented relative to a key that is provided on a fiber optic connector housing that has a central opening in the main body of the fiber optic connector.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: January 30, 2024
    Assignee: US Conec, Ltd.
    Inventor: Jeff Hendrick
  • Patent number: 11880069
    Abstract: An object is to provide a highly versatile local-light detection apparatus for an optical fiber capable of supporting various types of coated optical fibers.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 23, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takui Uematsu, Hiroyuki Iida, Hidenobu Hirota, Naotsugu Ambe
  • Patent number: 11846812
    Abstract: The present disclosure relates to an easy-to-unlock optical module. The easy-to-unlock optical module includes an optical module body and a mechanism of a pull ring for unlocking or locking connection between the optical module body and a metal cage. The mechanism of the pull ring includes a cover plate and the pull ring arranged on the optical module body. A pivot part for pivotally connecting the optical module body, and a first rotating arm and a second rotating arm respectively located on front and rear sides of the pivot part are arranged on the cover plate, and a lock head protrusion for matching with a spring lock groove on the metal cage is formed in the first rotating arm. The pull ring is pivotally connected to the optical module body, an unlocking contact surface and a locking contact surface are formed in the pull ring.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: December 19, 2023
    Assignee: Dongguan Kang Xiang Electronics Co., Ltd.
    Inventors: Xirong He, Ming Luo
  • Patent number: 11803021
    Abstract: Opto-electronic packages and methods for making opto-electronic packages are disclosed, including a method comprising forming an opto-electronic circuit on a first surface of a substrate of a lower package assembly, the first surface of the substrate having a first bonding pattern configured to provide a hermetic seal, the first bonding pattern extending around the opto-electronic circuit; positioning a bottom of a ring frame onto the first bonding pattern so as to surround the opto-electronic circuit with the ring frame; hermetically sealing a bottom of the ring frame to the first bonding pattern of the first surface of the substrate of the lower package assembly subsequent to the formation of the opto-electronic circuit on the first surface of the substrate; and hermetically sealing a top of the ring frame to form a hermetically sealed opto-electronic package.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: October 31, 2023
    Assignee: Infinera Corporation
    Inventors: Franklin Wall, Jr., John Osenbach, Jiaming Zhang
  • Patent number: 11803020
    Abstract: An optical bench subassembly including an integrated photonic device. Optical alignment of the photonic device with the optical bench can be performed outside of an optoelectronic package assembly before attaching thereto. The photonic device is attached to a base of the optical bench, with its optical input/output in optical alignment with the optical output/input of the optical bench. The optical bench supports an array of optical fibers in precise relationship to a structured reflective surface. The photonic device is mounted on a submount to be attached to the optical bench. The photonic device may be actively or passively aligned with the optical bench. After achieving optical alignment, the submount of the photonic device is fixedly attached to the base of the optical bench. The optical bench subassembly may be structured to be hermetically sealed as a hermetic feedthrough, to be hermetically attached to a hermetic optoelectronic package.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: October 31, 2023
    Assignee: Senko Advanced Components, Inc
    Inventors: Robert Ryan Vallance, Shuhe Li
  • Patent number: 11774689
    Abstract: The disclosed subject matter relates generally to photonic integrated circuit chips, semiconductor assemblies or packagings, and a method of forming the same. More particularly, the present disclosure relates to placement of optical fibers on a photonics chip, and a semiconductor assembly including the photonics chip.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: October 3, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Bartlomiej Jan Pawlak, Nicholas Polomoff
  • Patent number: 11774687
    Abstract: An optical interface assembly, comprising a lens, an optical receptacle, a stub disposed in the optical receptacle. The lens includes a convex surface farther away from the stub and a flat surface near the stub, the flat surface and a cross section of the lens being disposed at an inclined angle from each other. A first end surface of the stub facing the lens is disposed at an inclined angle relative to an axis of the stub. When a light beam is coupled into the stub by the lens, a portion of a return light reflected from the first end surface of the stub is reflected to an outside of the lens.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: October 3, 2023
    Assignee: InnoLight Technology (Suzhou) Ltd.
    Inventor: Long Chen
  • Patent number: 11747582
    Abstract: An optical cable including a rollable optical fiber ribbon is provided. The optical cable includes a plurality of loose tubes, and a plurality of rollable optical fiber ribbons are disposed inside each loose tube. A plurality of loose tubes are disposed at the periphery of the central strength member. The length of each rollable optical fiber ribbon disposed inside the loose tube is 1% or more longer than the length of the corresponding loose tube. Compared to an optical cable including a conventional ribbon, the optical fiber has a higher density and preferred transmission performance.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: September 5, 2023
    Assignee: TAIHAN FIBEROPTICS CO., LTD.
    Inventors: Sam Mo Jeong, Chang Ahn KiM, Do Hyun Kang, Chang Young Kim
  • Patent number: 11747574
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ferrule connection surface and ends of the recessed fibers.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 5, 2023
    Assignee: Ningo Litas Optical Technologies Co. Ltd.
    Inventor: Benjamin B. Jian