Patents Examined by Holly Le
  • Patent number: 11479674
    Abstract: Provided are: composite particles having excellent oxidation resistance; and a method for producing composite particles. The composite particles are obtained by forming a composite of TiN and at least one of Al, Cr, and Nb. In the method for producing composite particles, a titanium powder and a powder of at least one of Al, Cr, and Nb are used as raw material powders and composite particles are produced using a gas phase method.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: October 25, 2022
    Assignee: NISSHIN ENGINEERING INC.
    Inventors: Keitaroh Nakamura, Daisuke Sato
  • Patent number: 11479505
    Abstract: A quartz-based casting composition provides excellent resistance to attack by chemicals, including weak and strong acids. The quartz-based casting composition is useful as concrete in various construction applications where corrosion resistance is needed. The casting composition includes a dry component and a wet component. The dry component includes about 25% to about 100% by weight quartz and the corrosion resistance increases with increasing quartz content.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 25, 2022
    Assignee: Magneco/Metrel, Inc.
    Inventors: Michael W. Anderson, Charles W. Connors, Jr.
  • Patent number: 11465912
    Abstract: The disclosure relates to porous manganese oxide nanoparticles which include flocculated primary nanoparticles, with air pores formed between the primary nanoparticles. Unlike in the prior art, the porous manganese oxide nanoparticles of the disclosure have 6 nm or less MnO2 primary nanoparticles and Mn3O4 primary nanoparticles uniformly mixed and flocculated, exhibiting a 16 times higher specific surface area as compared with the conventional manganese oxide particles and superior storage characteristics and stability.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: October 11, 2022
    Inventors: Hyung Mo Jeong, Kyu Hyoung Lee
  • Patent number: 11465913
    Abstract: The disclosure relates to porous Co3O4 nanoparticles which include flocculated amorphous primary nanoparticles, with air pores formed between the amorphous primary nanoparticles. The porous Co3O4 nanoparticles, according to an embodiment of the disclosure, may be in the form of flocculated amorphous primary nanoparticles of 1 nm or less, have a 400 times larger specific surface area than the conventional Co3O4 particles, and address the issue with the expansion of Co3O4 lattices which may arise when the battery is charged or discharged, thereby providing more reliability when applied to batteries.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: October 11, 2022
    Inventors: Hyung Mo Jeong, Kyu Hyoung Lee
  • Patent number: 11459438
    Abstract: A thermal insulating additive, product formed therefrom, and method of making the same, wherein the thermal insulating additive comprises a plurality of hollow polymeric particles having an average particle size up to about 0.3 micrometers. The hollow polymeric particles exhibit a mechanical strength in a compression test up to about 420 psi and a thermal conductivity that is less than 0.150 W/m-k. The hollow polymeric particles are individually formed as an alkaline swellable core that is at least partially encapsulated with two or more shell layers; the alkaline swellable core prior to swelling exhibits an average particle size that is less than about 50 nanometers.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 4, 2022
    Assignee: Arkema Inc.
    Inventors: Lily Liu, Daniel E. Stark, Wayne Devonport, Donovan K. Lujan
  • Patent number: 11459756
    Abstract: The present invention relates to a corrosion-induced shape memory fiber, a preparation method and application thereof. The corrosion-induced shape memory fiber is composed of a core fiber and/or a core fiber with a corrosion-resistant coating, and a corrodible coating; the core fiber and/or the core fiber with the corrosion-resistant coating are in a tensile stress state along the length of the corrosion-induced shape memory fiber; the corrodible coating is in a compressive stress state along the length of the corrosion-induced shape memory fiber; the core fiber and/or the core fiber with the corrosion-resistant coating and the corrodible coating are in a tensile-compressive equilibrium state along the length of the corrosion-induced shape memory fiber; and the corrodible coating is coated outside the core fiber and/or the core fiber with the corrosion-resistant coating.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: October 4, 2022
    Inventors: Ziguo Wang, Yuyan Sun, Ziliang Wang
  • Patent number: 11453784
    Abstract: The present disclosure provides, for example, systems and methods for generating carbon particles. Carbon particles may have a total content of polycyclic aromatic hydrocarbons of less than or equal to about 0.5 parts per million, a content of benzo[a]pyrene of less than or equal to about 5 parts per billion, and a water spreading pressure that is less than about 5 mJ/m2. A carbon particle among the carbon particles may comprise less than about 0.3% sulfur by weight or less than or equal to about 0.03% ash by weight.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: September 27, 2022
    Assignee: MONOLITH MATERIALS, INC.
    Inventors: Ned J. Hardman, Brian R. Allison, Anthony P. Spizuoco, Christopher E. Mesrobian, Alexander F. Hoermann, Dylan Laidlaw, Aaron S. Hampton
  • Patent number: 11446221
    Abstract: The present invention provides zinc oxide having excellent infrared blocking ability, high whiteness, and excellent texture during use. The present invention relates to trivalent metal-doped hexagonal plate-shaped zinc oxide having an aspect ratio of 2.5 or greater, the trivalent metal-doped hexagonal plate-shaped zinc oxide having a trivalent metal element content based on the zinc element of 0.15 to 5 mol %, a whiteness of 90 or higher, and a powder spectral reflectance at a wavelength of 1500 nm of 80% or less.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 20, 2022
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Ryohei Yoshida, Mitsuo Hashimoto, Kazutaka Murai
  • Patent number: 11440809
    Abstract: An apparatus (1) for thermal denitration of a uranyl nitrate hydrate to uranium trioxide UO3. The apparatus (1) comprises a burner (114) and a reaction chamber (110) configured to carry out thermal denitration of uranyl nitrate hydrate and to form uranium trioxide UO3 in the form of particles. The apparatus also comprises a separating chamber (120) suitable for separating UO3 particles from the gases resulting from the thermal denitration carried out in the reaction chamber (110), and at least one filter (130) configured for purifying the gases. The separating chamber (120) is a decanting chamber into which the reaction chamber (110) directly opens out. The filter (130) is capable of performing the separation at a temperature greater than or equal to 350° C. The invention also relates to use of such an apparatus, to a thermal denitration process and to UO3 particles obtained by such a process.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: September 13, 2022
    Assignee: Areva NC
    Inventors: Alex Jourdan, Marc Dupoizat
  • Patent number: 11434423
    Abstract: The invention pertains to the field of nanotechnology. More particularly, the invention relates to highly luminescent nanostructures, particularly highly luminescent nanostructures comprising an indium-doped ZnSe core and ZnS and/or ZnSe shell layers. The invention also relates to methods of producing such nanostructures.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 6, 2022
    Assignee: Nanosys, Inc.
    Inventors: Jonathan Truskier, Christian Ippen, Jesse Manders, Ilan Jen-La Plante
  • Patent number: 11433598
    Abstract: Bioactive glass compositions, composites of the bioactive glass compositions with polymers, and 3D printable filaments made from the same, along with methods of making and using the same, are described. In some embodiments, the compositions, composites, and filaments have antibacterial activity.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: September 6, 2022
    Assignee: The University of Toledo
    Inventors: Aisling Coughlan, Emily Krull
  • Patent number: 11427740
    Abstract: Various shaped abrasive particles are disclosed. Each shaped abrasive particle includes a body having at least one major surface and a side surface extending from the major surface.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: August 30, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Todd M. Cotter, Francois Wagner, Rene G. Demers, Richard J. Klok, Alexandra Marazano, Adam D. Lior, James A. Salvatore, Sujatha K. Iyengar, David F. Louapre, Sidath S. Wijesooriya, Ronald Christopher Motta, Gary A. Guertin, Michael D. Kavanaugh, Doruk O. Yener, Jennifer H. Czerepinski, Jun Jia, Frederic Josseaux, Ralph Bauer, Frank J. Csillag, Yang Zhong, James P. Stewart, Mark P. Dombrowski, Sandhya Jayaraman Rukmani, Amandine Martin, Stephen E. Fox, Nilanjan Sarangi, Dean S. Matsumoto
  • Patent number: 11420870
    Abstract: The present invention discloses a method for directly synthesizing sodium borohydride by solid-state ball milling at room temperature, which comprises: performing solid-state ball milling on a mixture of a reducing agent and a reduced material by using a ball mill under room temperature, and performing purification to obtain sodium borohydride. The reducing agent comprises one or more of magnesium, magnesium hydride, aluminum, calcium, and magnesium silicide. The reduced material is sodium metaborate containing crystallization water or sodium metaborate, or is a mixture of sodium metaborate containing crystallization water and sodium metaborate. The solid-state milling is performed in a mixed atmosphere of argon and hydrogen, or an argon atmosphere, or a hydrogen atmosphere. The present invention has a simple process, a controllable and adjustable reaction procedure, mild reaction conditions, low energy consumption, low costs, high yield, no pollution, good safety, and easy industrial production.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 23, 2022
    Assignee: South China University of Technology
    Inventors: Liuzhang Ouyang, Hao Zhong, Wei Chen, Hui Wang, Jiangwen Liu, Min Zhu
  • Patent number: 11421130
    Abstract: A coating composition including: an aqueous dispersion of self-crosslinkable core-shell particles, where the core-shell particles include (1) a polymeric core at least partially encapsulated by (2) a polymeric shell having urethane linkages, keto and/or aldo functional groups, and hydrazide functional groups, where the polymeric core is covalently bonded to at least a portion of the polymeric shell, and an acrylic polymer, where the acrylic polymer is non-reactive with the polymeric core and the polymeric shell. A substrate coated with a coating formed from the coating composition and a method of improving stain resistance of a substrate are also disclosed.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: August 23, 2022
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Maria Wang, Shanti Swarup, Yu Wang, Xiangling Xu
  • Patent number: 11414717
    Abstract: In an embodiment, a method of hardening a surface of a substrate comprises directing a waterjet having a transition flow region, the waterjet comprising water and particles, at a surface of a substrate such that the waterjet impacts the surface within the transition flow region to provide a layer of embedded particles underneath the surface of the substrate, thereby forming a hardened substrate. The hardened substrates are also provided.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: August 16, 2022
    Assignee: Northwestern University
    Inventors: Qian Wang, Yip-Wah Chung, Kornel F. Ehmann, Xingliang He, Yi Shi, Zhong Liu
  • Patent number: 11396454
    Abstract: A negative thermal expansion material and a preparation method thereof, and a negative thermal expansion film and a preparation method thereof are provided. The negative thermal expansion material includes Eu0.85Cu0.15MnO3-?, wherein 0???2.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: July 26, 2022
    Assignees: ORDOS YUANSHENG OPTOELECTRONICS CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Wei Li, Pan Guo, Yanqing Chen, Ning Wang, Weida Qin, Haoyi Xin, Yanfeng Li, Chao Li, Yongchao Wang
  • Patent number: 11396626
    Abstract: A method for preparing a light sensitive particle that uses at least one metal precursor material and at least one dopant precursor material mixed in solution absent a surfactant. Upon an optional adjustment of pH to about 3 to about 6, a light-sensitive particle comprising a metal-dopant material may be formed and separated from the solution. The light-sensitive particle may comprise a Q-dot particle. Also described are the particles themselves.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: July 26, 2022
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Jeremy Tharkur, Swadeshmukul Santra
  • Patent number: 11390525
    Abstract: Provided is a carbon nanotube aggregate excellent in gripping force in a wide temperature range including high-temperature conditions. The carbon nanotube aggregate of the present invention is a carbon nanotube aggregate of a sheet shape, including a plurality of carbon nanotubes, wherein the carbon nanotube aggregate satisfies the following condition for FFM differential voltages when a frictional curve is obtained by scanning a front surface and/or a back surface of the carbon nanotube aggregate with a probe of a scanning probe microscope under a state in which the probe is brought into contact therewith: a ratio of an FFM differential voltage at 210° C. to an FFM differential voltage at 25° C. is from 0.3 to 5.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: July 19, 2022
    Assignee: NITTO DENKO CORPORATION
    Inventors: Yoshiharu Hatakeyama, Tomoaki Ichikawa, Shotaro Masuda, Yohei Maeno
  • Patent number: 11359137
    Abstract: A variety of particles forming microencapsulated thermochromic materials are provided. The particles can include a thermochromic core and a metal oxide shell encapsulating the thermochromic core. The thermochromic core can include one or both of an organic thermochromic material and an inorganic salt thermochromic material. In some aspects, the particles include a dye selected from a crystal violet lactone dye, a fluoran dye, and a combination thereof. In still further aspects, the particles include a color developer selected from a hydroxybenzoate, a 4, 4?-dihydroxydiphenyl propane, a hydroxycoumarin derivative, a lauryl gallate, and a combination thereof. In some aspects, the metal oxide shell is a TiO2 shell. The particles can be used in cements and paints and for a variety of building materials. Methods of making the particles and building materials and methods of use, for example, for removing a volatile organic carbon from a building material, are also provided.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: June 14, 2022
    Assignee: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Manoj Kumar Ram, Elias K. Stefanakos
  • Patent number: 11319710
    Abstract: A plaster composition includes a joint compound/drywall mud and from about 0.5 wt % to about 10 wt % silica (e.g., hydrophilic fumed silica). The plaster composition may be a repair composition. The repair composition may be dispensed as an aerosol using a propellant. The repair composition may be useful for repairing “popcorn” textured ceilings.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: May 3, 2022
    Inventor: Richard A. West