Patents Examined by Ivan Laboy Andino
  • Patent number: 8897036
    Abstract: A switching regulator related to aspects of the invention can include an auxiliary winding for monitoring the voltage across the primary winding of a transformer, a differentiation detecting circuit that detects the timing of reversal start or reversal end of the signal detected by the auxiliary winding and a dead time adjusting circuit that receives a signal to trigger turn OFF of a first switch or a second switch and, after passing a predetermined delay time from the detection of the signal, generates a signal to trigger turn ON of the first switch or the second switch. The differentiation detecting circuit can confirm current transfer between body diodes. The dead time adjusting circuit can adjust a dead time to deliver the signal after a predetermined time from the confirmation of the current transfer. In some aspects of the invention, occurrence of hard switching and short-circuit current can be suppressed.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 25, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Jian Chen
  • Patent number: 8891267
    Abstract: A circuit arrangement with standby mode minimizing power and/or current consumption having a mains AC power supply terminals and an active circuit capable of converting said mains AC power to lower voltage DC levels for operating in an active mode or in a standby mode as required by an appliance such that the selection of the current sensing resistor value for said current sensing resistor limits the maximum peak current through the FET so that the current sensing resistor arrangement is capable of providing significant increases in a steeper rise time of the current at around mains AC power supply zero crossing, so that current is pulled high while the mains AC power supply voltage is low.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: November 18, 2014
    Assignee: Hendon Semiconductors Pty. Ltd.
    Inventors: Paul Bourne, Philip Tracy, David Murfett
  • Patent number: 8884592
    Abstract: Embodiments of the present invention provide systems and methods for reducing switching frequency variation in a hysteretic switching regulator. Embodiments of the present invention provide a new duty cycle controller for a switching regulator incorporating a new Frequency Lock Loop (FLL) for controlling the hysteresis of a comparator, and this hysteresis variation directly controls the switching frequency. The FLL of the present invention advantageously maintains a fixed frequency operation for a switching regulator while not affecting the transient response or stability of the main loop because it only changes the hysteresis of the fast comparator and does not introduce delays in the main loop of the switching regulator. Thus, the FLL of the present invention advantageously maintains a fixed switching frequency while causing a minimal impact to the switching regulator.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: November 11, 2014
    Assignee: Broadcom Corporation
    Inventor: Iulian Mirea
  • Patent number: 8879281
    Abstract: A switching power source device IS capable of guaranteeing a normal switching operation even when the input of a coil voltage used for adjusting a dead time is eliminated. The switching power source device includes a dead time adjustment circuit that generates an ON trigger signal that regulates an ON timing of one of the first and second switching elements after elapse of a predetermined dead time from an OFF timing of the other switching element and that adjusts the dead time according to a temporal change of a terminal voltage detected from an auxiliary coil of an inductor; and a disable control circuit that detects a temporal change of the coil voltage during activation and disables a function of the dead time adjustment circuit adjusting the dead time when the coil voltage does not temporally change.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: November 4, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Koji Sonobe
  • Patent number: 8878500
    Abstract: There are provided a power factor correction circuit, and a power supply including the same, the power factor correction circuit including a main switch adjusting a phase difference between a current and a voltage of input power, a main inductor storing or discharging the power according to switching of the main switch, a snubber circuit unit including a snubber switch forming a transfer path for surplus power present before the main switch is turned on and a snubber inductor adjusting an amount of a current applied to the snubber switch, and a reduction circuit unit including an auxiliary inductor inductively coupled to the snubber inductor and an auxiliary resistor consuming power induced from the snubber inductor through the auxiliary inductor.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 4, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: In Wha Jeong, Bum Seok Suh, Kwang Soo Kim
  • Patent number: 8860398
    Abstract: This document discusses, among other things, apparatus and methods for an edge rate driver for a power converter switch. In an example, the driver can include an input node configured to receive a pulse width modulated signal, a first switch configured to couple a control node of the power converter switch to a supply voltage during a first state, a second switch configured to couple the control node of the power converter switch to a reference voltage during a second state, and a first current source configured to supply charge current to the first switch when the power converter switch transitions from the second state to the first state, the charge current configured to charge a parasitic capacitance of the power converter switch.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: October 14, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Michael David Mulligan, Timothy Alan Dhuyvetter
  • Patent number: 8817491
    Abstract: An electric power conversion system has an adaptable transformer turns ratio for improved efficiency. The transformer has multiple taps on its primary. Switching circuitry is configured to connect an energy source to the taps in at least two modes such that the transformer operates with a first primary-to-secondary turns ratio in the first mode and with a second primary-to-secondary turns ratio in the second mode. The first turns ratio is greater than the second turns ratio. Control circuitry is configured to operate the switching circuitry in the first mode when a voltage level of the energy source is above a first threshold and to operate the switching circuitry in the second mode when the voltage level is below a second threshold.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: August 26, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Paul Mohr, Mohamed Amin Bemat, Reynaldo P Domingo
  • Patent number: 8811038
    Abstract: A switching and control arrangement are provided along with a transformer arrangement such that semiconductor-based switches can be used in a medium DC voltage to AC inverter in a medium voltage to low voltage DC to DC converter. The switching arrangement on the secondary side of the transformer arrangement controls a current ramp up or down of switches on the primary side of the transformer that are used to convert DC to AC, thereby permitting for soft switching of those switches.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 19, 2014
    Assignee: Gridco, Inc.
    Inventors: Scott Downer, Naimish Patel
  • Patent number: 8766607
    Abstract: The present solution relates operation of a power conversion device (200, 500). A first gate (205, 505) is operated (901) to provide a voltage pulse (309,609) travelling from an input (201,501) to a wave propagation medium (105) through the first gate (205,505). The voltage pulse has duration (307,607) less than the propagation time through the medium (105) to one end of the medium (105) and back to the input (201,501). The pulse generates a reflected wave. The first gate (205,505) is operated (902) periodically providing a voltage pulse in synchronization with the reflected wave to accumulate the reflected wave travelling in the medium (105), performing the accumulation through an accumulation interval (303,603). A second gate (207,507) is operated (903) periodically to provide a discharge pulse (312,612) in synchronization with the reflected wave to discharge the wave travelling in the medium (105), performing the discharge through a discharge interval (310,610).
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 1, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Sverker Sander
  • Patent number: 8760897
    Abstract: A DC-AC converter is provided. The DC-AC converter includes a time-varying DC power generating circuit, an AC power generating circuit and a transmission capacitor. The time-varying DC power generating circuit is controlled by a pulse width modulation (PWM) signal to transform a DC source into a time-varying DC power. With reference to the time-varying DC power, the AC power generating circuit is controlled by a first polarity switching and a second polarity switching signal to generate an AC power. The transmission capacitor, coupled to the time-varying DC power generating circuit and the AC power generating circuit, transmits the time-varying DC power from the time-varying DC generating circuit to the AC power generating circuit.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: June 24, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Che Yang, Pao-Chuan Lin, Po-Yen Chen, Ching-Tsa Pan, Yeh-Hsiang Ho
  • Patent number: 8724356
    Abstract: A two-stage isolated DC/AC conversion circuit structure, consisting of a main switch, a second switch attached to a controller, another controller for controlling, and in work mode 1 and 2, after passing through the capacitor filter the low frequency half sine wave power is stored on this capacitor. After an inductor outputs the low frequency half sine wave power through this capacitor filter, it can respectively pass through the first and second transformers to increase the voltage, and then pass through the first and second secondary diode rectifiers, outputting the positive and negative half waves AC to the end user, and allow the end user to obtain the whole wave of the AC. Using the first and second diodes prevents outputting in reverse, and has the effect of isolation, and prevents all the stored energy for the later stage end user recharging to the front stage DC/AC conversion circuit.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: May 13, 2014
    Assignee: National Tsing Hua University
    Inventors: Ching-Tsai Pan, Po-Yen Chen, Ching-Hsiang Cheng
  • Patent number: 8692536
    Abstract: Provided is a switching regulator including a circuit for detecting a short-circuit state easily and reliably, without the need of an adjustment step such as trimming. In accordance with a drive signal of a power switching element of the switching regulator, a discharge circuit is controlled. When the power switching element is short-circuited and becomes the ON state all the time, the discharge circuit stops its operation, and a capacitor is continuously charged. A voltage detection circuit detects that a charge voltage of the capacitor has reached a predetermined potential, to thereby detect the short-circuit state.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 8, 2014
    Assignee: Seiko Instruments Inc.
    Inventor: Michiyasu Deguchi
  • Patent number: 8687397
    Abstract: A method and device for operating a direct converter circuit are provided. A control signal controls power semiconductor switches of switching cells of the associated phase module. The control signal is formed, for each phase module, from the difference between a reference signal relating to the voltage over the phase module and a voltage signal over the inductor. The voltage signal over the inductor is formed from a reference signal relating to the current through the corresponding phase module. The reference signal relating to the current through the phase module is formed from a respective mean value or instantaneous value of a phase power of a phase of the first and second current or voltage systems connected to the phase module and from respective sums of the instantaneous values or the mean values of the phase powers of the phases of the first and second current or voltage systems, respectively.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: April 1, 2014
    Assignee: ABB Schweiz AG
    Inventors: Manfred Winkelnkemper, Arthur Korn
  • Patent number: 8686701
    Abstract: An active wire compensation circuit, adapted to compensate a level of an output voltage detecting signal, is disclosed. A feedback controller controls a converting circuit according to the compensated output voltage detecting signal to have a load voltage for driving a load stabilized at a predetermined voltage level. The active wire compensation circuit comprises a compensating unit and a feedback compensating unit. The compensating unit detects the load current flowing through the load and accordingly generates a compensating current. The feedback compensating unit modulates the level of the output voltage detecting signal according to the compensating current and generates the compensated output voltage detecting signal.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: April 1, 2014
    Assignee: Analog Vision Technology Inc.
    Inventor: Ming Chiang Ting
  • Patent number: 8669746
    Abstract: The invention relates to an on-load tap changer comprising semiconductor switching elements for uninterrupted switching between winding taps of a tapped transformer. According to the invention, contact bars are provided which extend in the direction of the path of the fixed tap contacts and can be contacted using contact bridges that can be jointly moved by a contact slide in such a way that direct electrical connections to the charge diverter and electrical connections to the inputs and the output of the semiconductor switching elements can be established.
    Type: Grant
    Filed: February 6, 2010
    Date of Patent: March 11, 2014
    Assignee: Maschinenfabrik Reinhausen GmbH
    Inventors: Oliver Brueckl, Dieter Dohnal, Hans-Henning Lessmann-Mieske
  • Patent number: 8670248
    Abstract: This invention provides a primary-side controlled power converter comprising: an RC network coupled to an auxiliary winding of a transformer of the primary-side controlled power converter to detect a reflected voltage of the transformer for generating a reflected signal, and a controller coupled to the RC network to receive the reflected signal for generating a switching signal; wherein the RC network develops a zero to provide a high-frequency path for shortening a rising time and a settling time of the reflected signal.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: March 11, 2014
    Assignee: System General Corporation
    Inventor: Ta-Yung Yang
  • Patent number: 8638575
    Abstract: In one embodiment, a startup circuit for a power supply is provided. The startup circuit comprises a resistance coupled between a voltage source and a first node. A first capacitor, coupled to the first node, is operable to be charged by current flowing through the resistance. A first transistor has an emitter, a base, and collector, wherein the collector is coupled to the voltage source and the base is coupled to the first node. A diac circuit, coupled to the emitter of the first transistor, is operable to fire to turn on the first transistor, thereby allowing discharge of the first capacitor through the base-emitter junction of the first transistor. A second capacitor is operable to be charged by current related to a discharge voltage resulting from the firing of the diac circuit. The second capacitor operable to store charge to provide VCC voltage to a controller of the power supply.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: January 28, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Richard A. Dunipace
  • Patent number: 8604761
    Abstract: In one embodiment, the current source arrangement comprises a current source (B), that has two output terminals (102, 103) and a control input (101) to be supplied with a control voltage (Vgs) and is set up to provide a current (I) as a function of a voltage (Vds) at the output terminals (102, 103) and the control voltage (Vgs), an operating point adjustment unit (E) that is supplied with an actual value (Vi) proportional to an actual value of the current (I) and is set up to provide the control voltage (Vgs) as a function of the actual value (Vi) and a predetermined target value (Iz) of the current (I), and a comparison unit (A) coupled to the control input (101) of the current source (B) for providing a monitoring signal (100), wherein the monitoring signal (100) is provided as a function of a predetermined limit voltage (VG) and the control voltage (Vgs). A method for operating a current source arrangement is also specified.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: December 10, 2013
    Assignee: AMS AG
    Inventors: Gilbert Promitzer, Peter Rust, Peter Boesmueller
  • Patent number: 8599587
    Abstract: An apparatus, device, and system for generating an amount of output power in response to a direct current (DC) power input includes a configurable power supply, which may be electrically coupled to the DC power input. The configurable power supply is selectively configurable between multiple circuit topologies to generate various DC power outputs and/or and AC power output. The system may also include one or more DC power electronic accessories, such as DC-to-DC power converters, and/or one or more AC power electronic accessories such as DC-to-AC power converters. The power electronic accessories are couplable to the configurable power supply to receive the corresponding DC or AC power output of the configurable power supply.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 3, 2013
    Assignee: SolarBridge Technologies, Inc.
    Inventors: Patrick Chapman, William R. Van Dell
  • Patent number: 8593124
    Abstract: A switching power source apparatus includes a high-side MOSFET 11, a ramp generator 18 to generate a ramp signal, an amplitude signal generator (second feedback controller 2) to generate an amplitude signal Comp corresponding to an amplitude of the ramp signal, and a first feedback controller 1 to control the ON timing of the high-side MOSFET 11 according to the ramp signal, a feedback signal FB, and a first reference voltage REF and control the ON width of the high-side MOSFET 11 according to the amplitude signal Comp. The ramp generator 18 controls the inclination of the ramp signal so that the ramp signal maintains a predetermined amplitude. The first feedback controller 1 controls the ON width of the high-side MOSFET 11 so that the ON width does not become narrower than a predetermined limit value.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: November 26, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Masaru Nakamura