Patents Examined by J. Pasterczyk
  • Patent number: 6541412
    Abstract: A polymerization catalyst system and process, which utilizes a Group 14 and Group 16 containing oil or amorphous solid to solubilize polymerization catalyst components including metallocenes and Group 15 containing polymerization catalysts, is disclosed.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: April 1, 2003
    Assignee: Univation Technologies, LLC
    Inventor: David E. Gindelberger
  • Patent number: 6524987
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises contacting a organometal compound/organoaluminum mixture, a treated solid oxide compound, and, optionally, a second organoaluminum compound. The solid oxide has been treated with an electron-withdrawing compound, in particular a chlorine, preferably zinc chloride and carbon tetrachloride.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: February 25, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Kathy S. Collins, Syriac J. Palackal, Max P. McDaniel, Michael D. Jensen, Gil R. Hawley, Kenneth R. Farmer, Christopher E. Wittner, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin
  • Patent number: 6521560
    Abstract: This invention provides a solid titanium catalyst component which comprises magnesium, titanium, halogen and an electron donor, is free from elimination of titanium when washed with hexane at room temperature, and has a titanium content decrease ratio of less than 15 % by weight when washed with o-dichlorobenzene at 90° C. The catalyst component can be prepared by a process wherein solid titanium (i) which is free from elimination of titanium when washed with hexane at room temperature is contacted with a polar compound having a dipole moment of 0.50 to 4.00 Debye to decrease the titanium content by at least 25 % by weight, whereby a solid titanium catalyst component having a weight ratio of an electron donor to titanium of at least 6 is prepared. Olefin polymerization catalyst containing the solid titanium catalyst component can be used for (co)polymerization of olefins with high activity to obtain a polyolefin of high stereoregularity in decreased quantities of a low stereoregular polyolefin.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: February 18, 2003
    Assignee: Mitsui Chemicals Inc.
    Inventors: Shinichi Kojoh, Mamoru Kioka
  • Patent number: 6511936
    Abstract: The present invention relates to catalyst systems, processes for making such catalysts, intermediates for such catalysts, and olefin polymerization processes using such catalysts wherein such catalyst includes a component represented by the following formula 1A: wherein R and R′ independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl or organosilyl radical; R1, R2, and R3 independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl radical; M is a group IIIB, IVB, VB, VIB, VIIB or VIII transition metal; T independently represents a univalent anionic ligand such as a hydrogen atom, or a substituted or unsubstituted hydrocarbyl halogeno, aryloxido, arylorganosilyl, alkyloriganosilyl, amido, arylamido, phosphido, or arylphosphido group, or two T groups taken together represent an alkylidene or a cyclometallated hydrocarbyl bidentate ligand; L independently represents a sigma donor
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: January 28, 2003
    Assignees: University of Delaware, Chevron Chemical Co.
    Inventors: Klaus H. Theopold, Woo-Kyu Kim, Leonard A. MacAdams, John M. Power, Javier M. Mora, Albert P. Masino
  • Patent number: 6506704
    Abstract: A process for forming neutral late transition metal chelates useful as polymerization catalysts comprising contacting a bidentate ligand forming compound that is free of electron-withdrawing groups with a di(tertiary amine) late transition metal reagent in the presence of an inert liquid, an olefinic monomer or a polar liquid selected from nitrites, ethers, aromatic heterocyclic amines, alcohols, nitroalkanes, nitroaromatics or mixtures thereof. The process provides a solid product or a solution of a storage stable transition metal bidentate ligand containing catalyst product which remains active for an extended storage period. Alternately, the present process can be conducted in situ in a polymerization zone of olefinic polymerization.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: January 14, 2003
    Assignee: Cryovac, Inc.
    Inventors: Donald Albert Bansleben, Eric Francis Connor, Robert Howard Grubbs, Jason Ivan Henderson, Todd Ross Younkin
  • Patent number: 6492293
    Abstract: A catalyst for the polymerisation and copolymerisation of 1-olefins is disclosed which comprises 1) a late transition metal complex 2) optionally an activating quantity of an activator compound, and 3) a support which has been impregnated with titanium or aluminium, and calcined at a temperature of between 200° C. and 1000° C., said calcining being after impregnation in the case of aluminium.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: December 10, 2002
    Assignee: BP Chemicals Limited
    Inventor: John Gabriel Speakman
  • Patent number: 6489261
    Abstract: Catalyst compositions include a reduced transition metal complex of structure (I) and a cocatalyst. where, L1 and L2, may be the same or different, are anionic ligands, other than cyclopentadienyl group, amido group or phosphidino group. At least L1 is able to non-covalently interact with reduced transition metal M via one or more functional groups; for example, L1 can be a phenyl group in which at least one of the ortho-positions is substituted with a functional group capable of donating electron density to the transition metal M. L1 can also be a methyl group in which one or more or the alpha-positions is substituted with a functional group capable of donating electron density to the transition metal M. X, K, and m are defined in the specification. These catalysts may be easily formed as solids and provide improved catalytic performance.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: December 3, 2002
    Assignee: DSM N.V.
    Inventors: Gerardus J. M. Gruter, Mirko Kranenburg, Marc Herklots
  • Patent number: 6486090
    Abstract: Initiator systems of the invention comprise: a complexed initiator comprising at least one of a complex of a complexing agent comprising at least one hydroxide and an initiator or a complex of a complexing agent comprising at least one alkoxide and an initiator; and a decomplexer. The initiator systems are useful for initiating polymerization of at least one monomer to form polymerized compositions. Kits of the invention useful for forming the polymerized compositions comprise a polymerizable composition and an initiator component, wherein the initiator component comprises a complexed initiator of the invention. Bonding compositions can be prepared by mixing the polymerizable composition of the kit with the respective initiator component.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: November 26, 2002
    Assignee: 3M Innovative Properties Company
    Inventor: Dean M. Moren
  • Patent number: 6482764
    Abstract: A method for producing a supported catalyst useful in polymerization of ethylene and copolymerization of ethylene and &agr;-olefin is disclosed. The method includes treating the magnesium-containing carrier with a titanium compound containing oxygen atom(s), wherein said carrier is obtained by reaction of an organomagnesium compound of the structure of MgPh2.nMgCl2.mR2O (n=0.37˜0.7; m≧1; R20=ether; Ph=phenyl) with an organic chloride compound in a mole ratio of organic chloride compound/Mg≧0.5, at −20˜80° C. In one embodiment, the organic chloride compound may be carbon tetrachloride. A specific catalyst is provided whose activity is low in the beginning but slowly rises to a sufficient degree as the process of polymerization progresses, the polymer produced with the use of said catalyst having high bulk density, a well adjusted particle size distribution, and a narrow molecular weight distribution.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: November 19, 2002
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Ho-Sik Chang, Youn-Kyung Kang, Vladimir Alexandrovich Zakharov, Valentin Evgenievich Nikitin
  • Patent number: 6479422
    Abstract: Novel catalyst systems which comprise at least two diimine nickel complexes can be used with a co-catalyst such as methylaluminoxane in polymerization processes to produce polymers having multimodal molecular weight distributions. Also disclosed are the novel polymers obtained by the use of such catalyst systems.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: November 12, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Nancy W. Eilerts
  • Patent number: 6468937
    Abstract: There are disclosed: (i) a first solid catalyst component obtained by contacting (a) a carrier of carboxyl group-carrying polymer particles having an average particle size of from about 1 to 200 &mgr;m with spherical or elliptical particles morphology (b) an organometallic compound of the number 1, 2 or 13 group of metals in the periodic table of elements, and (c) a transition metal compound of the number 4 group of metals of the periodic table of elements, and a second solid catalyst component obtained by contacting (a), (b), (c) and (d) a phenol compound, and production processes of the two solid catalyst components, (ii) a catalyst obtained by combining the two solid catalyst components with an organoaluminum compound; and (iii) a process for producing an olefin polymer with a catalyst of the invention, wherein the polymer produced is extremely low in its content of lower molecular weight components and low crystallinity components, and superior in its powder properties.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: October 22, 2002
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kotohiro Nomura, Seiki Kiuchi, Tatsuya Miyatake
  • Patent number: 6458982
    Abstract: Metallocene catalysts for the preparation of polyolefins, in particular polypropylene having elastomeric properties, having specific heteroaromatics in position 2 or 3 of the indenyl system. Particular preference is given to unbridged metallocene compounds of the formula II: where M, X and R3 to R8 are defined herein.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: October 1, 2002
    Assignee: Targor GmbH
    Inventors: Jörg Schottek, Roland Kratzer
  • Patent number: 6455460
    Abstract: A catalyst of ruthenium (II) comprising bidentate phosphine ligands is described which is obtained by a process that comprises treating equimolar amounts of an appropriate Ru complex and a bidentate diphosphine ligand with an acid of the formula H-Anion, wherein the anion is a non-coordinating anion, said acid being used in a ratio of 1 molar equivalent per mole of Ru complex and the treatment being carried out in a non-coordinating or weakly coordinating medium, under an oxygen-free atmosphere. Said catalyst is useful for the preparation of the preferred isomer of the Hedione®, having the configuration (+)-(1R)-cis, and of many other substrates comprising highly hindered carbon-carbon double bonds.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: September 24, 2002
    Assignee: Firmenich SA
    Inventors: Daniel A. Dobbs, Koenraad P. M. Vanhessche, Valentin Rautenstrauch
  • Patent number: 6451728
    Abstract: The present invention provides an olefin polymerization catalyst by the use of which an olefin (co)polymer can be obtained with a high polymerization activity, and also provides a process for olefin polymerization using the catalyst. The olefin polymerization catalyst comprises a transition metal compound (A) represented by the formula (I): M: atom of Group 3 to Group 11 U: R2—C, N, P A: N, P Q: R3—C, N, P S: R4—C, N, P T: R5—C, N, P m: 2-6 R1-R5: hydrogen, hydrocarbon group, silicon-containing group or the like (When M is an atom of Group 6, R1 is not an aromatic hydrocarbon group.) n: number satisfying a valence of M X: halogen, hydrocarbon group or the like.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: September 17, 2002
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Shigekazu Matsui, Masatoshi Nitabaru, Yasunori Yoshida, Makoto Mitani, Terunori Fujita
  • Patent number: 6436866
    Abstract: Disclosed is a Lewis acid catalyst composition comprising a specific mixed medium and a Lewis acid catalyst (II), wherein the specific mixed medium is mixed medium (I) comprising a perfluorinated aliphatic hydrocarbon (A) and at least one non-fluorinated hydrocarbon or a mixed medium (I′) comprising a perfluorinated aliphatic hydrocarbon (A), a perfluorinated aromatic hydrocarbon (C) and water (D), and wherein the Lewis acid catalyst (II) is at least one compound selected from the group consisting of compounds respectively represented by the following formulae (1), (2) and (3): (RfSO3)nM  (1), [(RfSO2)2N]nM  (2), and [(RfSO2)3C]nM  (3). Also disclosed is a Lewis acid catalyst represented by the above-mentioned formula (3).
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: August 20, 2002
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Joji Nishikido, Hitoshi Nakajima
  • Patent number: 6436864
    Abstract: Unsaturated nitrogenous compounds are used as electron donors in conjunction with catalytic polymerization of addition polymerizable monomers such as olefins, using supported Ziegler-Natta catalysts. The electron donors may be used in the preparation of catalyst systems, thus serving as “internal” electron donors, or they may be added during or just prior to polymerization, as an “external” electron donor.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: August 20, 2002
    Assignee: SRI International
    Inventor: Christopher D. Tagge
  • Patent number: 6432862
    Abstract: Catalysts based on cobalt complexes of 2,6-pyridinecarboxaldehydebis(imine) and 2,6-diacylpyridine-bis(imine) tridentate ligands are provided, which are particularly suitable for the polymerization of olefins.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: August 13, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Alison Margaret Anne Bennett
  • Patent number: 6432860
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers which contain three or more carbon atoms or which are substituted vinyl compounds, such as styrene and vinyl chloride. One application is the stereospecific propagation of C3-C4 alpha olefins, particularly the polymerization of propylene to produce syndiotactic polypropylene over a supported metallocene catalyst comprising a stereospecific metallocene catalyst component incorporating a metallocene ligand structure having two sterically dissimilar cyclopentadienyl ring structures coordinated to the central transition metal atom. Both of the cyclopentadienyl groups are in a relationship with one another by virtue of bridge or substituent groups, which provide a stereorigid relationship relative to the coordinating transition metal atom to prevent rotation of said ring structures.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: August 13, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Margarito Lopez
  • Patent number: 6432863
    Abstract: The present invention is directed to a supported catalytic activator composition resulting from the contact of a catalyst support (formed by reaction of a carrier, such as an inorganic oxide (e.g., silica) and an organo halide such as bromo pentafluorobenzene in the presence of base) and a catalytic activator such as dimethylanilinium tetrakis (pentafluorophenyl) borate, and methods for making the same.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: August 13, 2002
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: David George Ward
  • Patent number: 6420303
    Abstract: A process for the production of a magnesium chloride powder for use in a catalyst, the process comprising vaporizing magnesium chloride in a plasma torch and quenching the vapor with a liquid containing an electron donor to form a magnesium chloride-based powder catalyst wherein at least 80% by weight of the magnesium chloride is present as the hexagonal phase thereof. The invention also relates to a precursor for such a catalyst.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: July 16, 2002
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Alain Standaert, Hendrik D'Haese