Patents Examined by James E Stroud
  • Patent number: 10407186
    Abstract: A method of controlling the attitude of a spacecraft in spinning around itself with a non-zero total angular momentum HTOT. The spacecraft includes a set of inertia flywheels configured to form an internal angular momentum HACT. The axis of the total angular momentum HTOT is aligned with a principal axis of inertia of the spacecraft, in the course of which the inertia flywheels are controlled to form an internal angular momentum HACT. The following expression, in which J is the inertia matrix of the spacecraft: Hact×J?1(Htot?J?1Htot) is negative if the principal axis of inertia targeted is the axis of maximum inertia of the spacecraft and is positive if the principal axis inertia targeted is the axis of minimum inertia of the spacecraft.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: September 10, 2019
    Assignee: AIRBUS DEFENCE AND SPACE SAS
    Inventors: Nicolas Cuilleron, Philippe Laurens, Valerio Moro
  • Patent number: 10408632
    Abstract: Navigation method and system are provided. The navigation method may include: a vehicle mounted system, which includes a storage device and a display, receiving a Turn-by-Turn navigation guidance instruction from a mobile device which has a navigation program running thereon; the vehicle mounted system selecting at least one guidance logo, stored in the storage device, according to the received Turn-by-Turn navigation guidance instruction; and the vehicle mounted system presenting on the display the at least one selected guidance logo. More vehicles can provide navigation with help of the mobile device.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: September 10, 2019
    Assignee: HARMAN INTERNATIONAL INDUSTRIES, INC.
    Inventors: Ping Zhou, Xiaopei Huang, Wenping Xiao
  • Patent number: 10401856
    Abstract: A vehicle running control apparatus capable of enabling a vehicle to more easily follow a target running state and improving the running stability of the vehicle is provided. A running state obtaining unit obtains the actual running state (actual running path or running position) of a vehicle. A target running state setting unit sets the target running state (target path or target position) of the vehicle. A deviation obtaining unit obtains a deviation of the actual running state from the target running state. A running support controller performs running support control of the vehicle such that the running state of the vehicle becomes identical or closer to the target running state. At this time, a correction unit makes the target running state closer to the actual running state as the deviation becomes greater.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: September 3, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yoshihiro Mori, Kuniaki Matsushima
  • Patent number: 10399564
    Abstract: A first phantom vehicle is projected into one of a branch and a circle lane of a roundabout in association with a first autonomous vehicle. The first autonomous vehicle is caused to enter the circle lane upon predicting no collision with oncoming vehicles. The first autonomous vehicle is caused to exit from the roundabout.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: September 3, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Perry Robinson MacNeille, Yimin Liu, David Charles Weber
  • Patent number: 10401185
    Abstract: An apparatus acquires a first piece of trajectory information from among plural pieces of trajectory information, and acquires a first planar graph from among one or more planar graphs. The apparatus generates a second planar graph, based on the first planar graph and plural pieces of position information included in the first piece of trajectory information, and extracts, from among the plural pieces of trajectory information, second pieces of trajectory information indicating trajectories passing a difference portion between the first and second planar graphs. For each of candidate graphs each obtained by excluding a reduction set of edges from the second planar graph, the apparatus calculates optimality of the each candidate graph with which an addition set of trajectories indicated by the first and second pieces of trajectory information are associated, and outputs one of the candidate graphs determined based on the calculated optimality.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: September 3, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Hiroya Inakoshi, Hiroaki Morikawa, Tatsuya Asai, Junichi Shigezumi
  • Patent number: 10391842
    Abstract: A computing system for a vehicle includes one or more processors and a memory for storing data and program instructions usable by the one or more processors. The one or more processors are configured to execute instructions stored in the memory to determine if a virtual straight line connecting a predetermined location within a vehicle with a light source external to the vehicle passes through a window of the vehicle. If the straight line passes through a window, it is determined if the straight line will pass through any deployable vehicle shade if the shade is deployed. If the straight line will pass through a shade if the shade is deployed and the shade through which the straight line will pass is not already deployed, the vehicle may be operated so as to deploy the shade through which the straight line will pass if the shade is deployed.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: August 27, 2019
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Danil V. Prokhorov
  • Patent number: 10384675
    Abstract: Methods and systems for automatically controlling a vehicle are disclosed. In one embodiment, a system includes an actuator configured to control one or more vehicle driving characteristics, at least one vehicle sensor configured to measure a vehicle characteristic, a remote assistant in communication with the vehicle, and a controller in communication with the actuator, the at least one vehicle sensor, and the remote assistant, the controller being programmed with an automated driving system control algorithm and configured to determine whether a failsafe condition has occurred based on sensor data from the at least one vehicle sensor, receive a control signal from the remote assistant, and automatically control the actuator based on the control signal.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: August 20, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael D. Alarcon, Akram M. Abdel-Rahman, Grant L. Meade, Sigrid C. Wagner, Jeremy A. Salinger
  • Patent number: 10370093
    Abstract: Techniques for calculating a sound received at a plurality of distances from an unmanned aerial vehicle (UAV) may be provided. For example, during delivery, the UAV may be associated with a sensor to obtain first sound information that corresponds to the sound generated by the UAV. A sensor associated with a landing marker may obtain second sound information about the sound generated by the UAV during flight and delivery of a payload to a location associated with the landing marker. In embodiments, the first sound information and the second sound information may be utilized to calculate sound metrics for the sound generated by the UAV and determine the sound received at a plurality of distances from the UAV during flight.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: August 6, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Brian C. Beckman, Eric Berlinberg, John Raymond Brodie, Emilia Sorana Buneci
  • Patent number: 10351145
    Abstract: A method for monitoring a vehicle, the method may include measuring a speed of the vehicle to provide speed measurements; measuring, by at least one vibration sensor, vibrations of the vehicle to provide vibrations measurements; determining, based on the vibration measurements and speed measurements, an actual relationship between speed and vibrations of the vehicle; comparing between the actual relationship between the speed and vibrations of the vehicle and a reference relationship between speed and vibrations of the vehicle to provide a comparison result; and determining the quality of the driving based on the comparison result.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: July 16, 2019
    Assignee: TRAFFILOG LTD
    Inventors: Robert Izraeli, Assi Bitton, Arik Greenberger
  • Patent number: 10351141
    Abstract: A control system controls a power transmission system located between a motive power source and drive wheels. The power transmission system includes a fluid coupling and an engagement device. The control system includes an electronic control unit configured to: obtain information concerning vibration of the power transmission system; determine whether the vibration of the power transmission system is in a resonance region of the power transmission system; control the engagement device so that the engagement device slips, when the electronic control unit determines that the power transmission system is in the resonance region; and control the motive power source when the electronic control unit determines that the power transmission system is in the resonance region, so that a rotational speed of the motive power source increases as compared with a case where the power transmission system is not in the resonance region.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 16, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Imamura, Atsushi Tabata
  • Patent number: 10343758
    Abstract: A method for controlling a speed of a marine vessel includes accelerating the marine vessel in response to a launch command. The method then includes holding the vessel speed at a desired vessel speed with a controller using feedback control. The controller phases in a derivative term of the feedback control in response to determining that the following conditions are true: (a) the vessel speed is within a given range of the desired vessel speed; and (b) an acceleration rate of the marine vessel is less than a given value.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: July 9, 2019
    Assignee: Brunswick Corporation
    Inventors: Steven J. Andrasko, Andrew J. Przybyl, Steven M. Anschuetz
  • Patent number: 10336252
    Abstract: Systems and methods are disclosed to assist a driver with a dangerous condition by creating a graph representation where traffic participants and static elements are the vertices and the edges are relations between pairs of vertices; adding attributes to the vertices and edges of the graph based on information obtained on the driving vehicle, the traffic participants and additional information; creating a codebook of dangerous driving situations, each represented as graphs; performing subgraph matching between the graphs in the codebook and the graph representing a current driving situation to select a set of matching graphs from the codebook; determining a distance metric between each selected codebook graphs and the matching subgraph of the current driving situation; from codebook graphs with a low distance, determining potential dangers; and generating an alert if one or more of the codebook dangers are imminent.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: July 2, 2019
    Assignee: NEC Corporation
    Inventor: Eric Cosatto
  • Patent number: 10328935
    Abstract: A system and method are provided for operating an autonomous or semi-autonomous host vehicle. The method includes receiving data measured from a plurality of sensors, wherein the measured data relates to one or more target vehicles in the host vehicle's field of view, calculating a desired speed command based on a driver-selected set-speed and the measured data, detecting initiation of a host vehicle lane change to a desired adjacent lane, and in response to initiation of the lane change, selecting an acceleration profile based on at least one set of operating conditions, calculating a modified speed command by adjusting the desired speed command according to the selected acceleration profile; and controlling a host vehicle speed based on the modified speed command.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: June 25, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kevin A. O'Dea, Akshat Rajvanshi
  • Patent number: 10322648
    Abstract: The invention relates to a control device for a voltage transformer of an electrically operated vehicle, which voltage transformer feeds an n-phase electric machine, n>1. The control device comprises an observer unit, which is designed to determine a present rotational speed of the electric machine and a present output current of the voltage transformer, a computing unit, which is coupled to the observer unit and which is designed to compute an instantaneous wheel speed of the wheels of the vehicle in dependence on the determined present rotational speed, and a slip control unit, which is coupled to the computing unit and which is designed to at least temporarily apply a current correction amount to the output current of the voltage transformer if the present change of the wheel speed of the wheels exceeds a first predetermined threshold value.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 18, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Emile Kruijswijk, Julien Kuehl, Markus Becker, Vincent Schulte-Coerne
  • Patent number: 10311740
    Abstract: A system for data aggregation and distribution comprises a context builder that receives a data request from a consumer, and a producers locator that communicates with producers. A producers filter receives a list of producers and selects producers capable of providing data relevant to context information. A data requests formatter receives the context information, and sends the data request to the selected producers. A data responses validator validates data responses from producers, and a data responses processor processes validated data responses. A data predictor receives processed data responses and context information, and generates data prediction information. A data fusion module receives processed data responses, context information, data prediction information, and data history. The data fusion module combines processed data responses with data prediction information to generate a consolidated data response for the consumer.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: June 4, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Amit Srivastav, Krishna Idupunur, Sibu Parakkattu Narayanan, Anantha Chandrasekhar Koduru, Shafi Merchant
  • Patent number: 10298722
    Abstract: An apparatus for adjusting a driving position of a driver of a vehicle includes: a communication module performing wireless communication with an external terminal of a user; a door module sensing an opening or closing of a door of the vehicle; and a controller receiving, when the door of the vehicle is opened, user information identifying the user from the external terminal via the communication module, retrieving driving position adjustment information corresponding to the user information from a big data server, and adjusting the driving position based on the driving position adjustment information.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 21, 2019
    Assignee: Hyundai Motor Company
    Inventors: Jin Kim, Dong Youl Lee, Chul Min Kim, Young Su Kim
  • Patent number: 10293692
    Abstract: A hybrid vehicle is provided. The hybrid vehicle includes an acceleration pedal, an engine configured to generate an engine torque based on a position of the acceleration pedal, an electronic control unit communicatively coupled to the engine and configured to calculate a target torque based on the position of the acceleration pedal, and estimate a motor-generated (MG)-assist torque based on difference between the target torque and the engine torque, a motor generator communicatively coupled to the electronic control unit and configured to generate the estimated MG-assist torque, and a power distribution unit configured to deliver the generated MG-assist torque combined with the engine torque to one or more wheels.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: May 21, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Dae Keun Yoo, Hiroki Sato, Jordan Choby, Shingo Eto
  • Patent number: 10287014
    Abstract: An unmanned aerial vehicle coupling apparatus for drone coupling. The unmanned aerial vehicle coupling apparatus includes a processor-based monitoring device to monitor values for each of a plurality of functions provided by a unmanned aerial vehicle and to detect when a value exceeds a predetermined threshold value, a vehicle selector to receive travel routes from each of a plurality of secondary vehicles and to select a secondary vehicle based on a travel route of the secondary vehicle when the value exceeds the predetermined threshold value, and a coupling mechanism to fasten and unfasten the unmanned aerial vehicle to the secondary vehicle.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: May 14, 2019
    Assignee: International Business Machines Corporation
    Inventors: Thomas D. Erickson, Michael S. Gordon, Clifford A. Pickover, Maja Vukovic
  • Patent number: 10279918
    Abstract: Methods and apparatus to control thrust ramping of an aircraft engine are disclosed. An example thrust control system includes a sensor to measure a crosswind speed and a thrust manager to compare the measured crosswind speed to a crosswind threshold range. The thrust manager activates a partial thrust ramping schedule during takeoff when the measured crosswind speed is within the crosswind threshold range. The partial thrust ramping schedule is selected from a plurality of thrust ramping schedules.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 7, 2019
    Assignee: The Boeing Company
    Inventors: Jason J. Jackowski, Kent E. Karnofski
  • Patent number: 10222211
    Abstract: A high-definition map system receives sensor data from vehicles travelling along routes and combines the data to generate a high definition map for use in driving vehicles, for example, for guiding autonomous vehicles. A pose graph is built from the collected data, each pose representing location and orientation of a vehicle. The pose graph is optimized to minimize constraints between poses. Points associated with surface are assigned a confidence measure determined using a measure of hardness/softness of the surface. A machine-learning-based result filter detects bad alignment results and prevents them from being entered in the subsequent global pose optimization. The alignment framework is parallelizable for execution using a parallel/distributed architecture. Alignment hot spots are detected for further verification and improvement. The system supports incremental updates, thereby allowing refinements of sub-graphs for incrementally improving the high-definition map for keeping it up to date.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: March 5, 2019
    Assignee: DeepMap Inc.
    Inventors: Chen Chen, Jeffrey Minoru Adachi