Patents Examined by James M Kish
  • Patent number: 11298568
    Abstract: Systems and methods for ablating tissue include an ablation device having an energy source and a sensor. The energy source provides a beam of energy directable to target tissue, and the sensor senses energy reflected back from the target tissue. The sensor collects various information from the target tissue in order to facilitate adjustment of ablation operating parameters, such as changing power or position of the energy beam. Gap distance between the energy source and target tissue, energy beam incident angle, tissue motion, tissue type, lesion depth, etc. are examples of some of the information that may be collected during the ablation process and used to help control ablation of the tissue.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: April 12, 2022
    Assignee: Auris Health, Inc.
    Inventors: Hira V. Thapliyal, David A. Gallup, James W. Arenson
  • Patent number: 11284801
    Abstract: A method to visualize, display, analyze and quantify angiography, perfusion, and the change in angiography and perfusion in real time, is provided. This method captures image data sequences from indocyanine green near infra-red fluorescence imaging used in a variety of surgical procedure applications, where angiography and perfusion are critical for intraoperative decisions.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: March 29, 2022
    Assignee: Stryker European Operations Limited
    Inventors: T. Bruce Ferguson, Jr., Cheng Chen
  • Patent number: 11278240
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: March 22, 2022
    Assignee: AccuVein, Inc.
    Inventors: Fred Wood, Ron Goldman, Stephen P. Conlon, Vincent Luciano
  • Patent number: 11259752
    Abstract: A method for adapting a medical system to an object movement during medical examination of the object and a medical system configured for carrying out the method. The medical system has a device for detecting and quantifying a motion of the object before or during an acquisition of diagnostic data. The system for detecting and quantifying a motion of the object is able to directly identify and qualify the occurrence of object motion and to automatically suggest an adaptation of the diagnostic data acquisition strategy/technique as a function of the object motion.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: March 1, 2022
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thorsten Feiweier, Tobias Kober, Gunnar Krueger
  • Patent number: 11253198
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: February 22, 2022
    Assignee: AccuVein, Inc.
    Inventors: Fred Wood, Ron Goldman, Stephen P. Conlon, Vincent Luciano
  • Patent number: 11253166
    Abstract: This invention relates to a method of catheter and radiating coil location in a human body. In particular, when a radiating coil is used in conjunction with a catheter, a coil locating device can be used to determine the distance the coil is from the device and its depth in the patient's body. A display is provided that shows both a reference image of a portion of a non-subject body and an image of the coil located on the display with reference to the reference image. This is achieved by locating the coil-locating device on a predetermined landmark on the patient's body. The coil and its signal wires can be incorporated into a stylet, guide wire or a catheter. The coil locating device can be orientated towards the head of the patient and for an axis of the device to be aligned with the mid sagittal plane of the patient.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: February 22, 2022
    Assignee: Avent, Inc.
    Inventors: William John Besz, Donald Philip Chorley, Stuart Brasted, Robert Anthony Walker
  • Patent number: 11246623
    Abstract: A device and method for visualization of the intravascular creation of autologous valves, and particularly venous valve, is disclosed herein. One aspect of the present technology, for example, is directed toward a delivery catheter that can include a lumen configured to receive a dissection assembly and a trough having a plurality of transducers electrically coupled to a proximal portion of the delivery catheter. At least one of the transducers can be configured to emit a signal towards a portion of a blood vessel adjacent the trough, and at least one of the transducers can be configured to receive a reflection of the emitted signal.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: February 15, 2022
    Assignee: InterVene, Inc.
    Inventors: Fletcher T. Wilson, David Batten, Zachary J. Malchano
  • Patent number: 11241591
    Abstract: An acoustic module with a transducer and a solid waveguide. The transducer and waveguide may be curved to focus the acoustic energy along a focal line. The transducer, the top surface of the waveguide and the bottom surface of the waveguide may extend along coaxial curves. The waveguide may include a recess closely receiving the transducer. The waveguide may include an integral skirt that provides a thermal mass. The acoustic module may include a space to accommodate thermal management options. For example, the acoustic module may include a heatsink, an active ventilation system and/or a phase change material. The ultrasound device may include a controller configured to perform a uniformity scan sweep during supply of operating power to the transducer. The uniformity scan sweep can extend through a frequency range that includes the operating point of the acoustic module and does not exceed an acceptable efficiency loss.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: February 8, 2022
    Assignee: Access Business Group International LLC
    Inventors: Ronald L. Stoddard, Michael E. Miles, Matthew J. Norconk, Joshua K. Schwannecke, Joseph C. Van Den Brink, Colin J. Moore, A. Esai Umenei, Ryan D. Schamper, Mark S. Bartrum, Benjamin C. Moes, Karlis Vecziedins, Ziqi Wu, Mark C. Smith, Bradley J. Pippel, David S. Vachon
  • Patent number: 11219420
    Abstract: An imaging system comprises a plurality of imaging detectors for acquiring imaging data. The plurality of imaging detectors is configurable to be arranged proximate to an anatomy of interest within a patient. Each of the plurality of imaging detectors has a field of view (FOV) and at least a portion of the plurality of imaging detectors image the anatomy of interest within the respective FOV. A processor receives the imaging data and processes the imaging data to form a multi-dimensional dataset having at least three dimensions.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: January 11, 2022
    Assignee: GE MEDICAL SYSTEMS ISRAEL, LTD
    Inventors: Eyal Shai, Yaron Hefetz, Ira Micah Blevis
  • Patent number: 11213220
    Abstract: A method for determining MRI biomarkers for in vivo issue includes the steps of obtaining raw data concerning the in vivo tissue from a MRI machine; processing the raw data to obtain parameter maps; when applicable, registering images such that the exact same tissue at serial points can be analyzed; applying a grid over a region of interest to create sub-regions of interest (SROIs); inserting parameter measures for each SROI into a spreadsheet program to create a large 3D data matrix; applying standard big-data analytics including data mining and statistics of matrix measures to find patterns of measurement values or measure changes (which may include established biomarkers). A medical imaging software program is used to obtain the parameter maps from the raw data and place multiple grids over the SROIs. 3D matrix measures may be data mined and analyzed using standard big-data analytics.
    Type: Grant
    Filed: August 8, 2015
    Date of Patent: January 4, 2022
    Assignee: CUBISME, INC.
    Inventor: Moira F. Schieke
  • Patent number: 11207024
    Abstract: A vascular imaging apparatus and a vascular imaging method are disclosed. The vascular imaging apparatus includes: a light source device, an image acquisition device, a projection device and an image processor. The light source device is configured to emit visible light and infrared light to a body portion to be tested in a time-sharing manner; the image acquisition device is configured to receive the visible light and the infrared light reflected by the body portion to be tested to acquire a visible image and an infrared image respectively; the image processor is configured to perform image processing on the infrared image and the visible image, to acquire a vascular enhancement image of the body portion to be tested; the projection device is configured to project the vascular enhancement image onto the body portion to be tested.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: December 28, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Guohe Wang
  • Patent number: 11205515
    Abstract: Annotations of medical images may be generated using one or more lexicons so that terminology is consistent across multiple exams, users, facilities, etc. Measurements of lesions may be provided using a bilinear measurement tool that allows easier bilinear measurements. Disease assessment models may be selected and applied as measurements are acquired in order to provide immediate determination of disease staging according to one or more selected assessment models.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: December 21, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Murray A. Reicher
  • Patent number: 11204399
    Abstract: Described here are systems and methods for using a laser-induced demagnetization of magnetic particles disbursed in a tracking marker to generate variable susceptibility effects that can be imaged with magnetic resonance imaging (“MRI”). As one example, laser power is delivered to nickel particles using fiber optics. This demagnetization effect can be used in rapid tracking of interventional devices by subtracting the two images acquired when the laser is off and on.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: December 21, 2021
    Assignee: SUNNYBROOK RESEARCH INSTITUTE
    Inventor: Charles Cunningham
  • Patent number: 11197768
    Abstract: The artificial body part control system using ultrasonic imaging includes of an ultrasonic transducer coupled with an ultrasonic image analyzer which may be adapted to transmit a control signal to an artificial body part.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: December 14, 2021
    Assignee: GEORGE MASON UNIVERSITY
    Inventors: Siddhartha Sikdar, Joseph J. Pancrazio, Ira A. Hunt, Andrew J. Nelson, Abdullah Al-Imran
  • Patent number: 11199597
    Abstract: A RF coil compression system for use with an MRI system configured to image a patient's breast is disclosed. In one embodiment, the compression system comprises a first compression plate comprising a first plurality of RF coil elements, which is positioned in a plane oriented orthogonal to a direction of the main magnetic field and the first RF coil elements having a reception sensitivity to a B1 field and is orthogonal to a main magnetic field of the MRI system. The compresses system may further comprise a second compression plate, configured to be positioned opposing the first compression plate and orthogonal to the superior-inferior direction, the second compression plate comprising a second plurality of RF coil elements, the second RF coil elements having a reception sensitivity to a B1 field oriented in a direction substantially orthogonal to the first direction and to the main magnetic field of the MRI system.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: December 14, 2021
    Assignee: Invivo Corporation
    Inventor: Kenneth Bradshaw
  • Patent number: 11191482
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 7, 2021
    Assignee: AccuVein, INC.
    Inventors: Ron Goldman, Stephen P. Conlon, Vincent Luciano, Fred Wood
  • Patent number: 11172880
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: November 16, 2021
    Assignee: AccuVein, Inc.
    Inventors: Ron Goldman, David Hunt, Mark Mock, Graham Marshall, Stephen P. Conlon, Robert Roth
  • Patent number: 11109806
    Abstract: A three dimensional imaging system includes a first laser emitting light at a first wavelength, and a scanner for scanning the laser light in a pattern on the target area. A photo detector receives light reflected from the target area as a contrasted vein image, resulting from differential absorption and reflection therein of the first wavelength of light. The intensity of the first laser is incrementally increased, and the photo detector thereby receives a plurality of contrasted vein images, each being at incrementally distinct depths beneath the target skin surface. Image processing is performed on the plurality of vein images to successively layer the veins in the images according to their depth, to create a single processed vein image. A second laser emitting a second wavelength of light is used in combination with the scanner to project the processed vein image onto the target area to overlay the veins therein.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: September 7, 2021
    Assignee: AccuVein, Inc.
    Inventors: Ron Goldman, Fred Wood, Stephen P. Conlon, Vincent Luciano
  • Patent number: 11092658
    Abstract: In a method for controlling a magnetic resonance imaging system as part of functional magnetic resonance imaging, a main magnetic field B0 is provided having a field strength of at most 1.4 tesla at a main field magnet system (4) of the magnetic resonance imaging system (1); and a measurement is performed as part of functional magnetic resonance imaging, wherein a measurement sequence (MS) is applied that has a longer echo time TE (e.g. longer than 100 ms).
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 17, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Edgar Mueller, Andreas Greiser, Peter Speier
  • Patent number: 11058371
    Abstract: A method of PET image reconstruction is provided that includes obtaining intra-patient tissue activity distribution and photon attenuation map data using a PET/MRI scanner, and implementing a Maximum Likelihood Expectation Maximization (MLEM) method in conjunction with a specific set of latent random variables, using an appropriately programmed computer and graphics processing unit, wherein the set of latent random variables comprises the numbers of photon pairs emitted from an electron-positron annihilation inside a voxel that arrive into two given voxels along a Line of Response (LOR), where the set of latent random variables results in a separable joint emission activity and a photon attenuation distribution likelihood function.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: July 13, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Alexander Mihlin, Craig S. Levin