Patents Examined by James Mitchell
  • Patent number: 8872318
    Abstract: A microelectronic package includes a subassembly, a second substrate, and a monolithic encapsulant. The subassembly includes a first substrate that has at least one aperture, a coefficient of thermal expansion (CTE) of eight parts per million per degree Celsius or less, and first and second contacts arranged so as to have a pitch of 200 microns or less. First and second microelectronic elements are respectively electrically connected to the first and second contacts. Wire bonds may be used to connect the second element contacts with the second contacts. A second substrate may underlie either the first or the second microelectronic elements and be electrically interconnected with the first substrate. The second substrate may have terminals configured for electrical connection to a component external to the microelectronic package. A monolithic encapsulant may contact the first and second microelectronic elements and the first and second substrates.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: October 28, 2014
    Assignee: Tessera, Inc.
    Inventors: Simon McElrea, Wael Zohni, Belgacem Haba
  • Patent number: 8866161
    Abstract: A structure of semiconductor device includes a first semiconductor layer; an intermediate layer on a surface of said first semiconductor layer; a second semiconductor layer on said intermediate layer, wherein said intermediate layer and said second semiconductor layer are integrated to a set of sub-structures; and a semiconductor light emitting device on said second semiconductor layer.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 21, 2014
    Assignee: Advanced Optoelectronics Technology, Inc.
    Inventors: Shih-Cheng Huang, Po-Min Tu, Ying-Chao Yeh, Wen-Yu Lin, Peng-Yi Wu, Shih-Hsiung Chan
  • Patent number: 8853058
    Abstract: A method of assembling semiconductor devices includes providing a structure that includes an array of conductive frame members beside an array of apertures and an array of conductive vias that are exposed at a first face and extend towards a second face. An array of semiconductor dies is positioned in the array of apertures with their active faces positioned in the first face of the structure. The assembly is encapsulated from the second face of the structure and a redistribution layer is formed on the first face of the structure and the active faces of the die. Material is removed from the back face of the encapsulated array to expose the vias at the back face for connection through a further redistribution layer formed on the back face to electronic components stacked vertically on the further redistribution layer.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kesvakumar V. C. Muniandy, Navas Khan Oratti Kalandar, Lan Chu Tan
  • Patent number: 8846444
    Abstract: A semiconductor package includes a semiconductor chip having a first surface, on which an electrode pad is arranged, and a second surface which is the other side of the semiconductor chip, an insulation member formed on the second surface of the semiconductor chip, and comprising a via hole at a position spaced apart from the semiconductor chip, and a conductive filler filling the via hole.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 30, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jin Ho Bae
  • Patent number: 8846450
    Abstract: A bonded device structure including a first substrate having a first set of metallic bonding pads, preferably connected to a device or circuit, and having a first non-metallic region adjacent to the metallic bonding pads on the first substrate, a second substrate having a second set of metallic bonding pads aligned with the first set of metallic bonding pads, preferably connected to a device or circuit, and having a second non-metallic region adjacent to the metallic bonding pads on the second substrate, and a contact-bonded interface between the first and second set of metallic bonding pads formed by contact bonding of the first non-metallic region to the second non-metallic region. At least one of the first and second substrates may be elastically deformed.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: September 30, 2014
    Assignee: Ziptronix, Inc.
    Inventors: Qin-yi Tong, Paul M. Enquist, Anthony Scott Rose
  • Patent number: 8847382
    Abstract: A semiconductor thermoelectric cooler includes P-type and N-type thermoelectric cooling elements. The P-type and N-type thermoelectric elements have a first portion having a first cross-sectional area and a second portion having a second cross-sectional area larger than the first cross-sectional area. The P-type and N-type thermoelectric cooling elements may, for example, be T-shaped or L-shaped. In another example, the thermoelectric cooling elements have a first surface having a first shape configured to couple to a first electrical conductor and a second surface opposite the first surface and having a second shape, different from the first shape, and configured to couple to a second electrical conductor. For example, the first surface may have a rectilinear shape of a first area and the second surface may have a rectilinear shape of a second area different from the first area. The semiconductor thermoelectric cooler may be manufactured using thin film technology.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: September 30, 2014
    Assignee: STMicroelectronics Pte. Ltd.
    Inventors: Ravi Shankar, Olivier Le Neel
  • Patent number: 8841779
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over contact pads on a surface of the semiconductor die. The bumps can have a fusible portion and non-fusible portion. A plurality of conductive traces is formed over a substrate with interconnect sites having a width greater than 20% and less than 80% of a width of a contact interface between the bumps and contact pads. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surface of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate. The conductive traces have a pitch as determined by minimum spacing between adjacent conductive traces that can be placed on the substrate and the width of the interconnect site provides a routing density equal to the pitch of the conductive traces.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: September 23, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8823145
    Abstract: Provided are a multilayer board and a light-emitting module having the same. The light-emitting module comprises a light-emitting diode chip and a multilayer board. The multilayer board is electrically connected to the light-emitting diode chip and comprises a nonconductive heat sink via and a thin copper layer.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: September 2, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Kyung Ho Shin
  • Patent number: 8809915
    Abstract: A gate conductor structure is provided having a barrier region between a N-type device and a P-type device, wherein the barrier region minimizes or eliminates cross-diffusion of dopant species across the barrier region. The barrier region comprises at least one sublithographic gap in the gate conductor structure. The sublithographic gap is formed by using self-assembling copolymers to form a sublithographic patterned mask over the gate conductor structure. According to one embodiment, at least one sublithographic gap is a slit or line that traverses the width of the gate conductor structure. The sublithographic gap is sufficiently deep to minimize or prevent cross-diffusion of the implanted dopant from the upper portion of the gate conductor. According to another embodiment, the sublithographic gaps are of sufficient density that cross-diffusion of dopants is reduced or eliminated during an activation anneal such that changes in Vt are minimized.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: Wai-Kin Li, Haining S. Yang
  • Patent number: 8796863
    Abstract: A semiconductor memory device includes a semiconductor die and an input-output bump pad part. The semiconductor die includes a plurality of memory cell arrays. The input-output bump pad part is formed in a central region of the semiconductor die. The input-output bump pad part provides a plurality of channels for connecting each of the memory cell arrays independently to an external device. The semiconductor memory device may adopt the multi-channel interface, thereby having high performance with relatively low power consumption.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: August 5, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-Cheol Lee, Chi-Sung Oh, Jin-Kuk Kim
  • Patent number: 8796115
    Abstract: A light-emitting diode arrangement comprising a plurality of semiconductor chips which are provided for emitting electromagnetic radiation from their front side and which are fixed by their rear side—opposite the front side—on a first main face of a common carrier body, wherein the semiconductor chips consist of a respective substrateless semiconductor layer stack and are fixed to the common carrier body without an auxiliary carrier, and to a method for producing such a light-emitting diode arrangement.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: August 5, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Jörg Erich Sorg, Stefan Gruber, Siegfried Herrmann, Berthold Hahn
  • Patent number: 8791506
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Ted Taylor, Xiawan Yang
  • Patent number: 8785321
    Abstract: A method and system is provided for efficiently varying the composition of the metal interconnects for a semiconductor device. A metal interconnect according to the present disclosure has an intermediate layer on a dielectric material, the intermediate layer having a relatively higher concentration of an impurity metal along with a primary metal, the impurity metal having a lower reduction potential than the primary metal. The metal interconnect has a main layer of the metal alloy interconnect on top of the intermediate layer and surrounded by the intermediate layer, the main layer having a relatively higher concentration of the primary metal than the intermediate layer, wherein the intermediate and main layers of the metal alloy interconnect each maintains a material uniformity.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Chu Ko, Ming-Hsing Tsai, Chien-Hsueh Shih
  • Patent number: 8786088
    Abstract: In complex semiconductor devices, sophisticated ULK materials may be used in metal line layers in combination with a via layer of enhanced mechanical stability by increasing the amount of dielectric material of superior mechanical strength. Due to the superior mechanical stability of the via layers, reflow processes for directly connecting the semiconductor die and a package substrate may be performed on the basis of a lead-free material system without unduly increasing yield losses.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: July 22, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Torsten Huisinga, Jens Heinrich, Kai Frohberg, Frank Feustel
  • Patent number: 8772952
    Abstract: To improve reliability of a semiconductor device in which wire bonding using a wire made of copper is performed. A semiconductor device is configured so that one of end parts (wide width part) of a copper wire is joined via a bump on a pad (electrode pad) formed over a main surface (first main surface) of a semiconductor chip of the semiconductor device. The bump is made of gold, which is a metal material having a hardness lower than that of copper, and the width of the bump is narrower than the width of the wide width part of the wire.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: July 8, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Masatoshi Yasunaga, Hironori Matsushima, Kenya Hironaga, Soshi Kuroda
  • Patent number: 8766935
    Abstract: An electrostatic capacitance-type input device includes: a first translucent conductive film that configures a first electrode that extends in a first direction in an input area on a substrate and second electrodes that extend in a second direction intersecting the first direction in the input area and are disconnected in intersection portions with the first electrode; an interlayer insulating film that is formed at least in areas overlapping the intersection portions; and a second translucent conductive film that configures relay electrodes formed on the interlayer insulating film to have sheet resistance lower than that of the first translucent conductive film and electrically connecting the second electrodes disconnected in the intersection portion by being electrically connected to the second electrodes in an area in which the interlayer insulating film is not formed and a peripheral wiring extending in a peripheral area of the substrate located to the outer side of the input area.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: July 1, 2014
    Assignee: Japan Display West, Inc.
    Inventor: Mutsumi Matsuo
  • Patent number: 8748949
    Abstract: The invention provides a chip package and fabrication method thereof. In one embodiment, the chip package includes: a semiconductor substrate having opposite first and second surfaces, at least one bond pad region and at least one device region; a plurality of conductive pad structures disposed on the bond pad region at the first surface of the semiconductor substrate; a plurality of heavily doped regions isolated from one another, underlying and electrically connected to the conductive pad structures; and a plurality of conductive bumps underlying the heavily doped regions and electrically connected to the conductive pad structures through the heavily-doped regions.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: June 10, 2014
    Inventors: Chien-Hung Liu, Cheng-Te Chou
  • Patent number: 8748231
    Abstract: A method of attaching a die to a carrier using a temporary attach material is disclosed. The method comprises attaching the temporary attach material between a surface of the die and a surface of the carrier. The temporary attach material attaches the die to the carrier. The method comprises bonding at least one connector to the die and the carrier. The connector includes a first end bonded to the carrier and a second end bonded to the die. The method further comprises encapsulating at least a portion of the die and at least a portion of the at least one connector by an encapsulation material.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: June 10, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventors: Elizabeth Anne Logan, Terry Lee Marvin Cookson, Sisira Kankanam Gamage, Ronald Almy Hollis
  • Patent number: 8742477
    Abstract: An integrated circuit structure can include a silicon interposer. The silicon interposer can include a first elliptical TSV and a keep out zone (KOZ) for stress effects upon active devices surrounding the first elliptical TSV. A size of the KOZ can be determined by a transverse diameter and a conjugate diameter of the first elliptical TSV.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: June 3, 2014
    Assignee: Xilinx, Inc.
    Inventor: Bahareh Banijamali
  • Patent number: 8735230
    Abstract: A process for manufacturing a semiconductor device consecutively includes forming a recess in the surface region of a silicon substrate, forming a gate insulation film on the surface of the recess, depositing a silicon electrode film including an oxygen-mixed layer extending parallel to the surface of the recess, injecting impurities into silicon the electrode film 17, and heat-treating the silicon electrode film to diffuse impurities.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: May 27, 2014
    Inventor: Kanta Saino