Patents Examined by James P. Hughes
  • Patent number: 7149384
    Abstract: A method of designing a multi-channel grating structure in a waveguide material, the method comprising the step of utilizing a multi-channel grating design function describing an envelope of a refractive index variation defining the multi-channel grating structure in the waveguide material, wherein the multi-channel grating design function deviates from a periodic sampling function multiplied by a single channel grating design function.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: December 12, 2006
    Assignee: Redfern Optical Components Pty Ltd.
    Inventors: Dimitri Yu Stepanov, Alexander Buryak
  • Patent number: 7146068
    Abstract: A polarization beam splitter and combiner and a polarization insensitive modulating and switching method and apparatus. In one aspect of the present invention, the disclosed apparatus a first optical waveguide disposed in a semiconductor material layer. A second optical waveguide is also disposed in the semiconductor material layer. An insulating region is disposed between the first and second optical waveguides to provide a coupling region in the semiconductor material layer between the first and second optical waveguides. The coupling region has a first coupling length for a first polarization mode of an optical beam directed through one of the first and second optical waveguides into the coupling region. The coupling region has a second coupling length for a second polarization mode of the optical beam.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: December 5, 2006
    Assignee: Intel Corporation
    Inventors: Remus Nicolaescu, Mario J. Paniccia
  • Patent number: 7141788
    Abstract: A mass spectrometric apparatus of high sensitivity, including a spray ionization interface suitable for the ionization of a low flow-rate liquid that prevents charged particles from being introduced into a vacuum device; wherein the ion source comprises a capillary having a first end having an inner diameter that gradually reduces in size in the direction of gas flow and wherein a liquid sample is introduced into an opposite second end of the capillary; a gas guide tube which guides gas flow along an outer periphery of the first end the capillary and which sprays the liquid sample from the first end of the capillary; and a gas introducing section for introducing the gas into the gas guide tube. A first end of the gas guide tube has a reduced inside diameter and receives the first end of the capillary in a holding member. Gaseous ions produced are introduced into a vacuum section through an ion intake port and are subjected to mass separation by a mass spectrometer.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: November 28, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Atsumu Hirabayashi, Yuichiro Hashimoto
  • Patent number: 7142751
    Abstract: Methods and system for chromatic dispersion compensation in disperser-combiner optical systems. The chromatic dispersion in disperser-combiner optical systems is substantially compensated by, after separating the input optical radiation into distinct chromatic components, propagating the distinct chromatic components through the optical system so that a pre-selected relationship between optical path lengths through the optical systems of the distinct chromatic components is obtained, where the pre-selected relationship substantially compensates the chromatic dispersion. The pre-selected relationship is obtained by reflecting the distinct chromatic components from a suitably placed and shaped pixellated optical volume reflector. After propagating through the optical system, the distinct chromatic components are recombined.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: November 28, 2006
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Thomas W. Stone
  • Patent number: 7136547
    Abstract: The invention provides a method and apparatus for directing a radiation beam (504, 606) in a desired direction. There is provided a movable member (10) supported for movement by a fixed member (40) and the movable member has an optical element, e.g a flat mirror (30) fixedly attached thereto. In one embodiment the mirror scans a radiation beam incident thereon in one plane. In a second embodiment, the radiation beam is scanned in two mutually perpendicular planes. A magnetic element (50) having a north and a south magnetic pole is fixedly attached to the movable member (10). A magnetically permeable stator element (70) that is stationary with respect to the movable member (10) and the magnetic element (50) is placed in the field of the magnetic element such that the stator element and said magnetic element mutually generate a magnetic traction force between them.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: November 14, 2006
    Assignee: GSI Group Corporation
    Inventors: David C. Brown, Felix Stukalin, Michael B. Nussbaum, Evghenii Onoicenco, Edward L. Kelley
  • Patent number: 7130511
    Abstract: A flexible active signal cable (100, 200) includes a flexible printed circuit substrate (105), two electrical connectors (110), at least two metal conductors (115), at least one flexible optical waveguide (120), an optical transmitter (125), and an optical receiver (130). In some embodiments, the flexible active signal cable is less than 0.5 meters long and is capable of being wrapped and unwrapped from a 5 millimeter diameter mandrel 10,000 times with a low probability of failure at a test temperature, while supporting data rates greater than 25 megabits per second.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 31, 2006
    Assignee: Motorola, Inc.
    Inventors: Markus Riester, Zhiming Zhuang, J. Yu Huinan, Nasir Irfan, Aroon V. Tungare
  • Patent number: 7130495
    Abstract: Characteristics are rendered variable and high-functional by using the side-pressure inductive polarization mode coupling of a PMF to thereby change the position and magnitude of a side pressure. An input light is incident via a polarizer (2), and an outgoing light is output via the PMF (1) and another polarizer (3). Light may enter and go out in an opposite way. The PMF (1) has two polarization axes orthogonal to each other, and the polarization axis of the polarizer (2) is coupled so as to agree with one end of the polarization axis of the PMF (1). The polarization axis of the polarizer (3) is coupled so as to agree with one end of the polarization axis of the PMF (1). The PMF (1) induces polarization mode coupling when a polarization light tilted a specified angle with respect to the polarization axis is incident to apply a side pressure to the PMF (1).
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: October 31, 2006
    Assignee: Japan Science and Technology Corporation
    Inventor: Shinji Yamashita
  • Patent number: 7130499
    Abstract: An optical communication module comprises a plurality of monolithic semiconductor transmitter photonic integrated circuit (TxPIC) chips each having a plurality of optical signal channels approximating wavelengths on a standardized grid. Each of the channels comprises a laser source optically coupled to an electro-optic modulator. The outputs of the electro-optic modulators are coupled to inputs of an optical combiner integrated on each of the chips for combining the inputs to form a combined signal output from the chip. A second optical combiner combines the combined signal outputs from the TxPICs to form a combined optical signal group output. A booster optical amplifier is optically coupled to the second optical combiner to receive and amplify the combined optical signal group output from the second optical combiner.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: October 31, 2006
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Patent number: 7123791
    Abstract: An optical fiber coupling system is provided which minimizes beam loss. The system includes a substrate with a laser beam emitting unit attached at one end, a first fine lens which focuses or collimates a vertical beam emitted by the laser beam emitting unit, a set of second fine lenses which focus or collimate a horizontal beam emitted by the laser beam emitting unit, and a beam output unit which outputs the beam focused or collimated by the first and second fine lenses. This arrangement reduces an alignment error associated with this type of optical system and improves a degree of beam focus. Additionally, the optical fiber coupling system can be made compact and available for mass-production.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: October 17, 2006
    Assignee: LG Electronics, Inc.
    Inventors: Young-Joo Yee, Hyouk Kwon, Chang-Hoon Oh
  • Patent number: 7118289
    Abstract: An optical fiber composite ferrule 1 is disclosed as having a leading terminal member 1A made of hard material such as zirconia ceramic, and a trailing terminal member 2A made of synthetic resin having a linear expansion coefficient equal to or less than that of the leading terminal member 1A. By so forming, a stress to be imparted to an optical fiber due to surrounding temperature variation can be lessened.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: October 10, 2006
    Assignee: Kyoueisenzai Kabushikigaisha
    Inventors: Kousei Ishibashi, Masahiro Shibata, Minoru Nakamura
  • Patent number: 7116850
    Abstract: A method and apparatus for reducing the difficulty of controlling the length of a section of optical waveguide wrapped around a mandrel separating Bragg gratings forming an interferometric sensor are provided. The section of optical waveguide may be wrapped on a mandrel having at least two different outer diameters. The mandrel may also include one or more bores for receiving and protecting the Bragg gratings.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: October 3, 2006
    Assignee: Weatherford/Lamb, Inc.
    Inventor: Daniel Ming Kwong Woo
  • Patent number: 7104700
    Abstract: A gain flattening filter is provided to reduce volume and manufacturing cost of a gain flattened optical fiber amplifier, even when a required peak loss exceeds the limit of each dielectric thin film filter. The inventive gain flattening filter includes: a housing having a first opening and a second opening; a first ferrule disposed at one end of the housing, the first ferrule having an opening through which an input of an optical fiber is packaged; a second ferrule disposed at the other end of the housing, the second ferrule having an opening through which an output of the optical fiber is packaged; and, a plurality of thin film filters disposed in sequence between the first and second ferrules for flattening gain of optical signals passing therethrough.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: September 12, 2006
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Seong-Taek Hwan G, Byung-Chang Kang, Yun-Je Oh
  • Patent number: 7103239
    Abstract: An optical transmitter comprises a monolithic transmitter photonic integrated circuit (TxPIC) chip that includes an array of modulated sources formed on the PIC chip and having different operating wavelengths approximating a standardized wavelength grid and providing signal outputs of different wavelengths. A wavelength selective combiner is formed on the PIC chip having a wavelength grid passband response approximating the wavelength grid of the standardized wavelength grid. The signal outputs of the modulated sources optically coupled to inputs of the wavelength selective combiner to produce a combined signal output from the combiner. A first wavelength tuning element coupled to each of the modulated sources and a second wavelength tuning element coupled to the wavelength selective combiner. A wavelength monitoring unit is coupled to the wavelength selective combiner to sample the combined signal output.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: September 5, 2006
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Charles H. Joyner, David F. Welch, Robert B. Taylor, Alan C. Nilsson
  • Patent number: 7092589
    Abstract: A method of operating an array of integrated laser sources formed as an integrated array on a single substrate in a photonic integrated circuit (PIC) where the laser sources are designed for operation at different targeted emission wavelengths which, in toto, at least approximate a grid of spatial emission wavelengths. A first wavelength tuning element is associated with each laser source and is adjusted over time so that each laser source maintains its targeted emission wavelength. As an alternative, the drive current to each laser source may be initially set so that each laser source operates at its targeted emission wavelength. Thereafter, adjustments to retune the laser sources to their targeted emission wavelengths are accomplished by the first wavelength tuning elements. The outputs of the laser sources may be combined via an optical combiner to produce a single combined output from the PIC.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: August 15, 2006
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Charles H. Joyner, David F. Welch, Robert B. Taylor, Alan C. Nilsson
  • Patent number: 7090411
    Abstract: A fiber optic connector for coupling focused radiant energy from a laser to a fiber optic conductor includes a secondary transmission path, one or more diffusers and, optionally, one or more internal heat sinks for diffusing radiant energy so as to and thereby minimize damage to the connector. In addition, coupling of the radiant energy to the cladding of the fiber is minimized by stripping or at least partially removing the cladding to reduce the amount of cladding in the area that extends to the focal plane of the radiant energy source, while reduction of higher order propagation modes may optionally be achieved by tapering a section of the fiber in such a manner that light entering the fiber at large critical angles are effectively collimated, i.e., bent towards the axis of the fiber.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: August 15, 2006
    Inventor: Joe D. Brown
  • Patent number: 7092594
    Abstract: A wavelength selector switch includes first and second refracting plates, an optical splitter, first and second optical systems, an optical coupler polarization controller, and second refracting plate. The first refracting plate refracts the second wavelength-multiplexed light beam. The optical splitter spatially splits into a plurality of wavelength components light beams. The first optical system changes the wavelength components into parallel light beams. The polarization controller selectively changes a polarization angle of each of the parallel light beams. The second optical system condenses the parallel light beams. The optical coupler multiplexes into a third wavelength-multiplexed light beam the parallel light beams condensed. The second refracting plate directs wavelength components of the third wavelength-multiplexed light beam to the first and second optical output ports depending on their polarization angles.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: August 15, 2006
    Assignee: Fujitsu Limited
    Inventors: Tsuyoshi Yamamoto, Shinji Taniguchi
  • Patent number: 7087885
    Abstract: The present invention provides an apparatus for measuring particle distribution for determining particle size distribution with higher precision by compensating for a reduction in scattering light due to the color of a sample and due to the particle size characterized by Mie scattering theory, and a method for measuring particle size distribution using such an apparatus. The apparatus for measuring particle distribution irradiates a laser beam to be measured, converts the resulting scattering light into an electrical detection signal, and performs inverse operation processes on the detection signal to calculate the particle size distribution of the sample. The measuring apparatus is provided with a laser light source that variably changes the wavelength of the laser beam depending on samples.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: August 8, 2006
    Assignee: Horiba, Ltd.
    Inventor: Tetsuji Yamaguchi
  • Patent number: 7087911
    Abstract: A system and method are used to isolate a first gas from a second gas using a third gas. A first chamber includes an element that emits light based on a first gas. A second chamber uses the emitted light to perform a process and includes the second gas. A gaslock that couples the first chamber to the second chamber. A gas source supplies a third gas between the first and the second gas in the gaslock, such that the first gas is isolated from the second gas in the gaslock. The first and third gas can be pumped from the first chamber and separated from one another, such that the first gas can be recycled for reuse to form the emitting light.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: August 8, 2006
    Assignee: ASML Holding N.V.
    Inventor: Stephen Roux
  • Patent number: 7088880
    Abstract: An optical fiber connection arrangement includes an alignment sleeve for coaxially aligning optical fibers mounted in ferrules. A gap between the ends of the optical fibers allows some light to escape. A sensor responds to the leaked light, and the resulting signal is processed to determine whether light signal is present or absent.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: August 8, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Vladimir Gershman
  • Patent number: RE39331
    Abstract: This invention provides a novel wavelength-separating-routing (WSR) apparatus that uses a diffraction grating to separate a multi-wavelength optical signal by wavelength into multiple spectral channels, which are then focused onto an array of corresponding channel micromirrors. The channel micromirrors are individually controllable and continuously pivotable to reflect the spectral channels into selected output ports. As such, the inventive WSR apparatus is capable of routing the spectral channels on a channel-by-channel basis and coupling any spectral channel into any one of the output ports. The WSR apparatus of the present invention may be further equipped with servo-control and spectral power-management capabilities, thereby maintaining the coupling efficiencies of the spectral channels into the output ports at desired values.
    Type: Grant
    Filed: December 31, 2004
    Date of Patent: October 10, 2006
    Assignee: Capella Photonics, Inc.
    Inventors: Tai Chen, Jeffrey P. Wilde, Joseph E. Davis