Patents Examined by Jasmine Clark
  • Patent number: 9941146
    Abstract: Disclosed herein is a semiconductor device that includes a semiconductor die and a substrate having a first surface and a second surface. The semiconductor die is attached to the second surface. The substrate includes a layer of insulative material and at least a portion of an embedded conductive circuit in the layer of insulative material. The substrate includes an etched layer of a conductive material attached to the portion of the conductive circuit, the etched layer of the conductive material located on the first surface of the substrate.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: April 10, 2018
    Assignee: CHIP SOLUTIONS, LLC
    Inventor: Sukianto Rusli
  • Patent number: 9935067
    Abstract: Methods of forming connector pad structures, interconnect structures, and structures thereof are disclosed. In some embodiments, a method of forming a connector pad structure includes forming an underball metallization (UBM) pad, and increasing a surface roughness of the UBM pad by exposing the UBM pad to a plasma treatment. A polymer material is formed over a first portion of the UBM pad, leaving a second portion of the UBM pad exposed.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: April 3, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company LTD.
    Inventors: Chia-Lun Chang, Chung-Shi Liu, Hsiu-Jen Lin, Hsien-Wei Chen, Ming-Da Cheng, Wei-Yu Chen
  • Patent number: 9933568
    Abstract: Provided is an SOI substrate which has a substrate, an insulating layer formed over the substrate, and a semiconductor layer formed over the insulating layer. Optical waveguides are formed in the semiconductor layer of the SOI substrate. This substrate has a low resistance semiconductor layer and a high resistance semiconductor layer thereover. Further, wirings which are formed through insulating films are provided on the optical waveguides. In this manner, the low resistance semiconductor layer is arranged in the surface part of the substrate of the insulating films, thereby restraining an eddy current generated in the substrate due to an electric signal transmitted through the wirings.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: April 3, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Tohru Kawai, Yasutaka Nakashiba
  • Patent number: 9935043
    Abstract: An interconnection substrate includes a first insulating layer, and an interconnection structure formed on the first insulating layer, wherein the interconnection structure includes an interconnection pattern having a first metal layer, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer, and a fourth metal layer covering an upper surface and side surface of the interconnection pattern, wherein an outer perimeter of the second metal layer protrudes at the side surface of the interconnection pattern to form a first protrusion, and the fourth metal layer has a second protrusion that protrudes at a side surface of the interconnection structure at a position corresponding to the first protrusion.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 3, 2018
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Kei Imafuji, Satoshi Fujii
  • Patent number: 9935041
    Abstract: A clip tape includes connected clip sets; each includes a first clip and a second clip oriented in a same direction, connected by a connector bar. A first multi-chip module and a second multi-chip module are formed by providing a lead frame array containing lead frame units, and providing a clip tape containing connected clip sets. A connected clip set is separated from the clip tape as a unit and placed on the lead frame array; the first clip in the first multi-chip module, and the second clip in the second multi-chip module. The connector bar remains attached during a heating operation, and is severed by a singulation process. A multi-chip module includes a lead frame unit, a semiconductor device, and a clip of a connected clip set attached to the semiconductor device. A connector bar extends from the clip to an external surface of the multi-chip module.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: April 3, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Osvaldo Jorge Lopez, Jonathan Almeria Noquil
  • Patent number: 9929293
    Abstract: In a superlattice (SL) photodetector, each period of the SL includes first and second semiconductor layers having different compositions, at least one of which comprises indium arsenide (InAs). At least one of these two semiconductor layers has a graded composition. In embodiments, the first semiconductor layer comprises InAs and the second semiconductor layer is a graded layer comprising indium arsenide antimonide (InAsSb), wherein the antimony (Sb) concentration is varied. In examples, the Sb concentration in the second layer gradually increases from the top and bottom toward the middle of the layer.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: March 27, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jin K. Kim, John F. Klem, Eric A. Shaner, Benjamin Varberg Olson, Emil Andrew Kadlec, Anna Tauke-Pedretti, Torben Ray Fortune
  • Patent number: 9929012
    Abstract: A method is disclosed to prepare a substrate for photolithography. The method includes forming an underlayer over a surface of the substrate; depositing an interface hardmask layer on the underlayer using one of a vapor phase deposition process or an atomic layer deposition process; and forming a layer of extreme UV (EUV) resist on the interface hardmask layer, where the interface hardmask layer is comprised of material having a composition and properties tuned to achieve a certain secondary electron yield from the interface hardmask layer. Also disclosed is a structure configured for photolithography. The structure includes a substrate; an underlayer over a surface of the substrate; an interface hardmask layer disposed on the underlayer; and a layer of EUV resist disposed on the interface hardmask layer. The interface hardmask layer contains material having a composition and properties tuned to achieve a certain secondary electron yield from the interface hardmask layer.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: March 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Michael P Belyansky, Ravi K Bonam, Anuja Desilva, Scott Halle
  • Patent number: 9929113
    Abstract: A semiconductor device structure and a method for manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a semiconductor device structure (e.g., a sensor device structure), and method for manufacturing thereof, that comprises a three-dimensional package structure free of wire bonds, through silicon vias, and/or flip-chip bonding.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: March 27, 2018
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: Jong Sik Paek, No Sun Park
  • Patent number: 9922949
    Abstract: Disclosed herein is a semiconductor device that includes a semiconductor die and a substrate including a first surface and a second surface. The substrate includes a conductive circuit and an insulative material over the conductive circuit. The semiconductor die is attached to the second surface. The semiconductor device further includes a metal barrier layer plated onto a functional copper layer etched to form the conductive circuit. The conductive circuit has a thickness of less than or equal to 3 ?m. Further disclosed is a method of making a semiconductor device.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 20, 2018
    Assignee: CHIP SOLUTIONS, LLC
    Inventor: Sukianto Rusli
  • Patent number: 9922934
    Abstract: A package carrier includes a carrier and a light absorption layer. The light absorption layer is disposed on the carrier. The light absorption layer includes a notch at the periphery of the carrier, and the notch is light transmissive so as to expose the carrier to light in a normal direction of the carrier. A semiconductor manufacturing process is also provided.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Hui Wang, Chih-Hung Cheng, Yung-Chi Lin, Wen-Chih Chiou
  • Patent number: 9917071
    Abstract: A semiconductor package includes: a first substrate including a first interconnection structure extending from a surface of the first substrate, the first interconnection structure including grains of a first size, a second substrate including: a second interconnection structure comprising grains of a second size, and a third interconnection structure disposed between the first interconnection structure and the second interconnection structure, the third interconnection structure including grains of a third size, a first sidewall inclined at a first angle to a reference plane and a second sidewall inclined at a second angle to the reference plane, wherein the first angle is different from the second angle, the first sidewall is disposed between the first substrate and the second sidewall, and the third size is smaller than both the first size and the second size.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: March 13, 2018
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Ying-Ta Chiu, Yong-Da Chiu, Dao-Long Chen, Chih-Cheng Lee, Chih-Pin Hung
  • Patent number: 9913374
    Abstract: Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: March 6, 2018
    Assignees: THE TRUSTEES OF PRINCETON UNIVERSITY, VORBECK MATERIALS CORPORATION
    Inventors: John M. Crain, John S. Lettow, Ilhan A. Aksay, Sibel Korkut, Katherine S. Chiang, Chuan-Hua Chen, Robert K. Prud'Homme
  • Patent number: 9911667
    Abstract: A package includes a device die, which includes a metal pillar at a top surface of the device die, and a solder region on a sidewall of the metal pillar. A molding material encircles the device die, wherein a top surface of the molding material is substantially level with a top surface of the device die. A dielectric layer overlaps the molding material and the device die, with a bottom surface of the dielectric layer contacting a top surface of the device die and a top surface of the molding material. A redistribution line (RDL) extends into the dielectric layer to electrically couple to the metal pillar.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 9911675
    Abstract: Packaged semiconductor devices and methods of packaging semiconductor devices are disclosed. In some embodiments, a packaged semiconductor device includes an integrated circuit die, a molding compound disposed around the integrated circuit die, and an interconnect structure disposed over the integrated circuit die and the molding compound. The molding compound is thicker than the integrated circuit die.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: March 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chung-Shi Liu, Chih-Fan Huang, Chih-Wei Lin, Wei-Hung Lin, Ming-Da Cheng
  • Patent number: 9905438
    Abstract: A package substrate and a semiconductor package are provided. The package substrate includes an insulating layer having opposing first and second surfaces; a first wiring layer formed in the insulating layer, exposed from the first surface of the insulating layer, and having a plurality of first conductive pads; a second wiring layer formed in the insulating layer, exposed from the second surface, and having a plurality of second conductive pads; a third wiring layer formed on the first surface and electrically connected with the first wiring layer; a plurality of first metal bumps formed on the first conductive pads corresponding; and at least one conductive via vertically embedded in the insulating layer and electrically connected to the second and third wiring layers. Therefore, the surfaces of first conductive pads are reduced, and the non-wetting between the first conductive pads and the solder materials formed on conductive bumps is avoided.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: February 27, 2018
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Ming-Chen Sun, Chun-Hsien Lin, Tzu-Chieh Shen, Shih-Chao Chiu, Yu-Cheng Pai
  • Patent number: 9905530
    Abstract: A method of ultrasonically bonding semiconductor elements includes the steps of: (a) aligning surfaces of a plurality of first conductive structures of a first semiconductor element to respective surfaces of a plurality of second conductive structures of a second semiconductor element, wherein the surfaces of each of the plurality of first conductive structures and the plurality of second conductive structures include aluminum; and (b) ultrasonically bonding ones of the first conductive structures to respective ones of the second conductive structures.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: February 27, 2018
    Assignee: Kulicke and Soffa Industries, Inc.
    Inventors: Robert N. Chylak, Dominick A. DeAngelis
  • Patent number: 9899415
    Abstract: A radio frequency fully depleted silicon on insulator (RF-FDSOI) device and method of fabrication are provided. A silicon wafer for digital circuits is constructed using fully depleted silicon on insulator technology having a thin buried oxide layer. Localized areas of the silicon wafer are constructed for radio frequency circuits and/or passive devices. The silicon wafer has a silicon substrate having a resistivity greater than 1 K?·cm. The localized areas of the silicon wafer may include a trap rich layer implanted underneath a thin buried oxide layer. The localized areas of the silicon wafer may include a buried oxide layer that is thicker than the thin buried oxide layer. The thicker oxide layer is between 20 and 2000 nm thick. The localized areas of the silicon wafer may include a trap rich layer implanted underneath the thicker buried oxide layer.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: February 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Jean-Olivier Plouchart
  • Patent number: 9899294
    Abstract: Provided are a thermal interface material layer and a package-on-package device including the same. The package-on-package device may include a thermal interface material layer interposed between lower and upper semiconductor packages and configured to have a specific physical property. Accordingly, it is possible to prevent a crack from occurring in a lower semiconductor chip, when a solder ball joint process is performed to mount the upper semiconductor package on the lower semiconductor package.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: February 20, 2018
    Assignee: Samsung Electronics co., Ltd.
    Inventors: Min-Ok Na, Jongkook Kim, Hyo-Chang Ryu, Jin-woo Park, BongJin Son, Jangwoo Lee
  • Patent number: 9899309
    Abstract: A semiconductor substrate is provided, including a substrate body having a lateral surface, and a protruding structure extending outward from the lateral surface. The semiconductor substrate distributes stresses generated during a manufacturing process through the protruding structure, and is thus prevented from delamination or being cracked. An electronic package having the semiconductor substrate is also provided.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: February 20, 2018
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Shih-Ching Chen, Shih-Liang Peng, Chieh-Lung Lai, Jia-Wei Pan, Chang-Lun Lu
  • Patent number: 9899300
    Abstract: A semiconductor device has a semiconductor element provided with a functional surface on which a functional circuit is formed and with a back surface facing in the opposite direction to the functional surface, while also having a lead supporting the semiconductor element and electrically connected to the semiconductor element, and a resin package covering at least a portion of the semiconductor element and the lead. The semiconductor element has a functional surface side electrode formed on the functional surface and equipped with a functional surface side raised part that projects in the direction in which the functional surface faces. The functional surface side raised part of the functional surface side electrode is joined to the lead by solid state bonding.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: February 20, 2018
    Assignee: ROHM CO., LTD.
    Inventors: Kenji Fujii, Yasumasa Kasuya, Mamoru Yamagami, Naoki Kinoshita, Motoharu Haga