Patents Examined by Jason H Duger
  • Patent number: 11231043
    Abstract: The present disclosure is directed to a gas turbine engine including a compressor rotor. The compressor rotor includes a first stage compressor airfoil defined at an upstream-most stage of the compressor rotor. The first stage compressor airfoil defines a first stage pressure ratio of at least approximately 1.7 during operation of the gas turbine engine at a tip speed of at least approximately 472 meters per second.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: January 25, 2022
    Assignee: General Electric Company
    Inventors: Veeraraju Vanapalli, Bhaskar Nanda Mondal, Jagata Laxmi Narasimharao, Tsuguji Nakano, Subramanian Narayanan
  • Patent number: 11215083
    Abstract: A retention device includes a retention block including an opening extending through the retention block in a first direction. A tab also extends from the retention block in the first direction. A fastener extends through the opening and includes a head configured to engage the retention block. A clinch nut is coupled to the fastener with an interface surface of the clinch nut configured to engage the tab of the retention block.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 4, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: Thomas E Clark, Brian C McLaughlin
  • Patent number: 11208960
    Abstract: A method and system of controlling a turboprop engine are described. The method comprises obtaining a propeller speed and a pressure-based measurement signal from a torque pressure transducer coupled to the turboprop engine, determining an output power of the turboprop engine from the pressure-based measurement and the propeller speed, calculating a gas generator speed request based on an error between the output power and a reference power, determining a fuel flow command based on the gas generator speed request, and issuing the fuel.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: December 28, 2021
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventor: Gabriel Meunier
  • Patent number: 11193422
    Abstract: A lubrication system is disclosed. The lubrication system may be used in conjunction with a gas turbine engine for generating power or lift. The lubrication system utilized a flow scheduling valve which reduces lubricant flow to at least one component based on an engine load. The lubrication system may further include a main pump which may be regulated by an engine speed. Thus, a lubrication system which provides a lubricant to engine components based on the load and speed of the engine is possible. The system may improve efficiency of the engine by reducing the power previously spent in churning excess lubricant by at least one engine component as well as reducing the energy used by a lubricant cooler in cooling the excess lubricant. The lubricant cooler size may also be minimized to reduce weight and air drag due to the reduced lubricant flow.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: December 7, 2021
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Francis Parnin, Paul H. Dolman, David M. Daley, Denman H. James, Richard W. Clark
  • Patent number: 11181042
    Abstract: A gas turbine engine has a cycle operability parameter ? in a defined range to achieve improved overall performance, taking into account fan operability and/or bird strike requirements as well as engine efficiency. The defined range of cycle operability parameter ? may be particularly beneficial for gas turbine engines in which the fan is driven by a turbine through a gearbox.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 23, 2021
    Assignee: ROLLS-ROYCE plc
    Inventors: Michael O Hales, Craig W Bemment, Stephane M M Baralon, Benjamin J Sellers, Christopher Benson, Benedict R Phelps, Mark J Wilson
  • Patent number: 11174789
    Abstract: A gas turbine engine assembly includes a turbomachine including a compressor section, a combustion section, and a turbine section in serial flow order; a fuel delivery system operable with the combustion section of the turbomachine for providing fuel to the combustion section of the turbomachine; and an air cycle assembly including an air cycle machine and a heat exchanger, the air cycle machine in airflow communication with the compressor section of the turbomachine and the heat exchanger in airflow communication with the air cycle machine. The gas turbine engine assembly also includes a thermal transfer bus thermally coupling the heat exchanger of the air cycle assembly to the fuel delivery system for transferring heat from the air cycle machine to the fuel delivery system.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: November 16, 2021
    Assignee: General Electric Company
    Inventors: Jeffrey Douglas Rambo, Gregory Michael Petrasko
  • Patent number: 11167854
    Abstract: The invention relates to an aircraft incorporating an enhanced power unit for generating electric, pneumatic and/or hydraulic power for the aircraft during all stages of the aircraft operation. The power unit (1) comprises: a heat engine (14) with a drive shaft (2) and a combustion gases exhaust (7). The power unit (1) also includes a Rankine cycle system (12) for recovering thermal energy from a heat source of the power unit (1) for the assistance of the heat engine (14). The heat source for the Rankine cycle system can be taken from the exhaust gases of the heat engine, from the oil coolant circuit of the heat engine or from the output of a compressor driven by the heat engine. Preferably, the aircraft cabin air is reused as a source of oxygen for the combustion. The invention reduces bleed air extraction from the aircraft main engines thereby reducing fuel consumption.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: November 9, 2021
    Inventors: Carlos Casado-Montero, Alberto Molina Parga
  • Patent number: 11168611
    Abstract: A gas turbine engine generates noise during use, and one particularly important flight condition for noise generation is take-off. A gas turbine engine has high efficiency together with low noise, in particular the noise emanating from the front of the fan. The contribution of the fan noise emanating from the front of the engine to the Effective Perceived Noise Level (EPNL) at a take-off lateral reference point, defined as the point on a line parallel to and 450 m from the runway centre line where the EPNL is a maximum during take-off, is in the range of from 0 EPNdB and 12 EPNdB lower than the contribution of the fan noise emanating from the rear of the engine to the EPNL at the take-off lateral reference point.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: November 9, 2021
    Assignee: ROLLS-ROYCE PLC
    Inventors: Alastair D Moore, Robert J Telling
  • Patent number: 11168616
    Abstract: A gas turbine engine according to an exemplary embodiment of this disclosure includes among other possible things, a fan section including a plurality of fan blades, a first electric motor assembly that provides a first drive input for driving the fan blades about an axis, a turbine section, and a geared architecture driven by the turbine section and coupled to the fan section to provide a second drive input for driving the fan blades, and second electric motor assembly is coupled to rotate the geared architecture relative to a fixed structure controls a speed of the fan blades provided by a combination of the first drive input and the second drive input.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: November 9, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Daniel Bernard Kupratis, Christopher J. Hanlon, William G Sheridan
  • Patent number: 11156158
    Abstract: A combustion device burns fuel ammonia in a combustion chamber using compressed combustion air, and includes a combustion air cooling unit which is configured to cool the combustion air by heat exchange with the fuel ammonia during or before a compression process.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: October 26, 2021
    Assignee: IHI CORPORATION
    Inventors: Shintaro Ito, Soichiro Kato, Masahiro Uchida, Shogo Onishi, Taku Mizutani, Tsukasa Saitou, Toshiro Fujimori
  • Patent number: 11149639
    Abstract: Systems and methods of conditioning inlet air flow in a turbine engine. Where distortions in uniformity of inlet air flow are caused at least in part by the interaction of the air flow with the air inlet duct, a method of adaptively removing the distortions prior to the compressor stage comprises determining the distortion in the airflow; exposing the airflow to a plurality of correction vanes; and positioning the plurality of correction vanes based at least upon the determined distortion. An inlet conditioner system comprises an adaptable conditioning grid located within an air passage; a sensor suite configured to sense a characteristic of the airflow within the air passage; and a control system operably connected to the sensor suite and the adaptable conditioning grid. The control system may be adapted to configure the adaptable conditioning grid based on a sensed characteristic.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: October 19, 2021
    Assignee: Rolls-Royce North American Technologies Inc.
    Inventor: Robert T. Duge
  • Patent number: 11149646
    Abstract: A gas turbine engine is provided having a combustion section with a liner extending between a forward end and an aft end. A structural member is positioned in or around at least a portion of the combustion section. Additionally, a piston ring holder is provided attached to the structural member at a first end and positioned proximate to the aft end of the liner at a second end. The piston ring holder is a bimetallic member including a first portion formed of a first material and a second portion formed of a second material. A coefficient of thermal expansion of the first material is different than a coefficient of thermal expansion of the second material.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Nicholas John Bloom, Michael Alan Stieg, Brian Christopher Towle
  • Patent number: 11149575
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly comprises an inner wall defining an inner boundary of a flow path and a plurality of pockets therein, and a unitary outer wall defining an outer boundary of the flow path. The unitary outer wall includes combustor and turbine portions that are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils that each have an inner end radially opposite an outer end and define an internal cavity for receipt of a flow of cooling fluid. The inner end of each nozzle airfoil is received in one of the plurality of inner wall pockets and defines an outlet for the flow of cooling fluid to flow from the internal cavity to the pocket, which forms a fluid curtain to discourage fluid leakage from the flow path.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Brandon Alianson Reynolds
  • Patent number: 11149569
    Abstract: Flow path assemblies of gas turbine engines are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes a combustor portion extending through a combustion section of the gas turbine engine and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils, each nozzle airfoil having an inner end radially opposite an outer end. The inner wall or the unitary outer wall defines a plurality of openings therethrough, and each opening is configured for receipt of one of the plurality of nozzle airfoils. Methods of assembling flow path assemblies also are provided.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Brandon ALIanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher
  • Patent number: 11143104
    Abstract: A method of operating a thermal management system for a gas turbine engine includes determining the gas turbine engine is in a first operating mode; transferring heat from a first heat source exchanger to a heat sink system in response to determining the gas turbine engine is in the first operation mode, the first heat source exchanger thermally coupled to a first system/component of the gas turbine engine; determining the gas turbine engine is in a second operating mode, the second operating mode being different than the first operating mode; and transferring heat from a second heat source exchanger to the heat sink system in response to determining the gas turbine engine is in the second operation mode, the second heat source exchanger thermally coupled to a second system/component of the gas turbine engine, the second system/component being different than the first system/component.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: October 12, 2021
    Assignee: General Electric Company
    Inventors: Kishanjit Pal, Arnab Sen, Pranav R. Kamat, Brandon Wayne Miller, Daniel Alan Niergarth
  • Patent number: 11143402
    Abstract: Gas turbine engines, as well as outer walls and flow path assemblies of gas turbine engines, are provided. For example, an outer wall of a flow path comprises a combustor portion extending through a combustion section, and a turbine portion extending through at least a first turbine stage of a turbine section. The combustor and turbine portions are integrally formed as a single unitary structure that defines an outer boundary of the flow path. As another example, a flow path assembly comprises a combustor dome positioned a forward end of a combustor; an outer wall extending from the combustor dome through at least a first turbine stage; and an inner wall extending from the combustor dome through at least a combustion section. The combustor dome extends radially from the outer wall to the inner wall and is integrally formed with the outer and inner walls as a single unitary structure.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: October 12, 2021
    Assignee: General Electric Company
    Inventors: Mark Eugene Noe, Shawn Michael Pearson, Joshua Tyler Mook, Brandon ALlanson Reynolds, Jonathan David Baldiga
  • Patent number: 11131245
    Abstract: There is described a method and system for in-flight start of an engine. The method comprises rotating a propeller; generating electrical power at an electric generator embedded inside a propeller hub from rotation of the propeller; transmitting the electrical power from the electric generator to an engine starter mounted on a core of the engine via an electric power link; and driving the engine with the engine starter to a sufficient speed while providing fuel to a combustor to light the engine to achieve self-sustaining operation of the engine.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: September 28, 2021
    Assignees: PRATT & WHITNEY CANADA CORP., HAMILTON SUNDSTRAND CORPORATION
    Inventors: Robert H. Perkinson, Richard Ullyott
  • Patent number: 11125187
    Abstract: A gas turbine engine includes a case assembly, a splitter, an upstream blade row, and a transition duct. The case assembly defines an outer flow path wall and an inner flow path wall. The splitter is disposed between the outer flow path wall and the inner flow path wall. The splitter has a first surface and a second surface disposed opposite the first surface. The transition duct is defined by the outer flow path and the inner flow path and extends between the upstream blade row and the leading edge of the splitter.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: September 21, 2021
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventor: Victor G. Filipenco
  • Patent number: 11125104
    Abstract: The present disclosure concerns control a hybrid electric gas turbine system (300) for an aircraft. The system comprises an electric generator (308) and a gas turbine (309) to form a generator system, an electric motor (303) and a fan (302) to form a propulsor (301), a controller (306) and an electric storage unit (307). After receiving a command for a change in demand for thrust, the controller (306) determines an operational profile that minimises a function comprising a measure of fuel supplied to the gas turbine (309), a transfer of electric power from or to the electric storage unit (307) and a difference between measures of current and demanded thrust over a time period. The controller then operates the electric motor (303), gas turbine (309) and electric storage unit (307) according to the determined operational profile over the time period.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: September 21, 2021
    Assignee: ROLLS-ROYCE PLC
    Inventor: Marko Bacic
  • Patent number: 11118509
    Abstract: A turbojet of the unducted rotor type and an aircraft including such a turbojet, the turbojet including a gas generator, a first unducted propeller connected to a shaft of the gas generator via first reduction gearing, and a second unducted propeller connected to a shaft of the gas generator via second reduction gearing, wherein the first propeller and the first reduction gearing are mounted at the front of the gas generator, and wherein the second propeller and the second reduction gearing are mounted at the rear of the gas generator.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: September 14, 2021
    Assignee: SAFRAN AIRCRAFT ENGINES
    Inventors: Thomas Julien Nguyen Van, Olivier Belmonte, Jeremy Phorla Lao, Clementine Charlotte Marie Mouton, Emmanuel Pierre Dimitri Patsouris, Didier Jean-Louis Yvon