Patents Examined by Jason Holloway
  • Patent number: 11814041
    Abstract: A vehicle control device includes a peripheral recognition unit configured to recognize a peripheral status of a vehicle including a position of a traffic participant present in a periphery of the vehicle on the basis of an output of an in-vehicle device, an estimation unit configured to estimate a peripheral attention ability of the traffic participant on the basis of an output of the in-vehicle device, and a risk area setting unit configured to set a risk area of the traffic participant on the basis of a result of the estimation performed by the estimation unit.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: November 14, 2023
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Misa Komuro, Yosuke Sakamoto
  • Patent number: 11813733
    Abstract: Disclosed is a medical robot system including medical robots placed at different locations and a data analysis apparatus. Each of the medical robots includes a controller that transmits data on a state of operation of the medical robot to the data analysis apparatus. The data analysis apparatus includes a data analysis unit that generates a reference for determining whether or not the medical robots are normal, based on the data transmitted from the medical robots. The data analysis unit monitors the data transmitted from each of the medical robots in operation based on the reference.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: November 14, 2023
    Assignees: SYSMEX CORPORATION, MEDICAROID CORPORATION
    Inventors: Kaoru Asano, Yasuhiro Kouchi, Mitsuichi Hiratsuka, Tetsuya Nakanishi
  • Patent number: 11794735
    Abstract: A vehicle drive assistance apparatus includes a surrounding environment information acquiring unit, a crossing-vehicle recognition unit, a contact estimation unit, a contact avoidance operation determination unit, and a front-vehicle recognition unit. The crossing-vehicle recognition unit recognizes a crossing vehicle based on the surrounding environment information acquired by the surrounding environment information acquiring unit. The contact estimation unit estimates a possible contact between an own vehicle and the crossing vehicle at an intersection by comparing an intersection entering time of the own vehicle with an intersection entering time of the crossing vehicle.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: October 24, 2023
    Assignee: SUBARU CORPORATION
    Inventor: Kazuya Kozono
  • Patent number: 11796997
    Abstract: The subject disclosure relates to technologies for vehicle interactions with emergency vehicles. A process of the disclosed technologies can include steps for receiving a command from an emergency vehicle identifying an autonomous vehicle and initiating actions to cause the autonomous vehicle identified by the emergency vehicle to obey the command.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 24, 2023
    Assignee: GM Cruise Holdings LLC
    Inventors: Anuj Kaul, Kunal Roy
  • Patent number: 11779400
    Abstract: Provided are robotic systems and methods for navigation of luminal network that can improve strain-based shape sensing. In one aspect, the system can compare strain-based shape data to shape data determined based on robotic data (e.g., kinematic model data, torque measurements, mechanical model data, command data, etc.) and adjust the strain-based shape data as necessary. Any portion of the strain-based shape data can be adjusted, weighted differently, or discarded based on the comparison. For example, data from trustworthy sources may indicate that the shape of an instrument exhibits or should exhibit one or more characteristics. If the system determines that any portion of the strain-based shape data is not in agreement with such characteristics, the system may adjust the portion of the strain-based shape data such that the adjusted strain-based shape data is in agreement with the characteristics of the instrument.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: October 10, 2023
    Assignee: Auris Health, Inc.
    Inventors: Chauncey F. Graetzel, David Paul Noonan
  • Patent number: 11780515
    Abstract: An example implementation involves receiving measurements from an inertial sensor coupled to the robot and detecting an occurrence of a foot of the legged robot making contact with a surface. The implementation also involves reducing a gain value of an amplifier from a nominal value to a reduced value upon detecting the occurrence. The amplifier receives the measurements from the inertial sensor and provides a modulated output based on the gain value. The implementation further involves increasing the gain value from the reduced value to the nominal value over a predetermined duration of time after detecting the occurrence. The gain value is increased according to a profile indicative of a manner in which to increase the gain value of the predetermined duration of time. The implementation also involves controlling at least one actuator of the legged robot based on the modulated output during the predetermined duration of time.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 10, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Marco da Silva
  • Patent number: 11767057
    Abstract: When a collision avoidance steering control start condition becomes satisfied, a driving support ECU starts a steering control to avoid a collision with a frontward vehicle. The ECU prohibits the steering control when an indicated direction by turn indications of the frontward vehicle is the same as a planned direction of the steering control. The ECU sets the start condition to a first start condition, when the turn indicators of the frontward vehicle are not indicating a turning direction. The ECU sets the start condition to a second start condition, when the indicated direction is different from the planned direction. The first and second start conditions have been set such that an inter-vehicular distance between the host vehicle and the frontward vehicle of when the second start condition can be satisfied is shorter than one of when the first start condition can be satisfied.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: September 26, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yumi Shimanaka, Sho Hashimoto
  • Patent number: 11745756
    Abstract: A system and method for assisting a driver in controlling a vehicle, the vehicle comprising one or more driver controls, the method comprising determining an optimal path for the vehicle; determining, based on the current motion of the vehicle and a current setting of one or more driver controls, a predicted path of the vehicle; determining if there is a difference between the optimal path for the vehicle and the predicted path of the vehicle; and if it is determined that there is a difference between the optimal path and the predicted path, delivering haptic and non-haptic feedback to the driver of the vehicle, the feedback comprising an indication that the driver should alter the current setting of one or more driver controls, wherein alteration of the setting of one or more driver controls modifies the motion of the vehicle to reduce the difference.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: September 5, 2023
    Assignee: MCLAREN AUTOMOTIVE LIMITED
    Inventor: Stephen Gordon David Tucker
  • Patent number: 11738448
    Abstract: The solar energy and solar farms are used to generate energy and reduce dependence on oil (or for environmental purposes). The maintenance, operation, optimization, and repairs in big farms become very difficult, expensive, and inefficient, using human technicians. Thus, here, we teach using the robots with various functions and components, in various settings, for various purposes, to improve operations in big (or hard-to-access) farms, to automate, save money, reduce human mistakes, increase efficiency, or scale the solutions to very large scales or areas, e.g., for repair, operation, calibration, testing, maintenance, adjustment, cleaning, improving the efficiency, and tracking the Sun.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: August 29, 2023
    Assignee: BT Patent LLC
    Inventor: Saied Tadayon
  • Patent number: 11731557
    Abstract: A vehicle is provided. The vehicle includes: a global navigation satellite system (GNSS) receiver configured to receive a signal from a GNSS; a guide lamp installed on a front portion of the vehicle; and a controller electrically connected to the GNSS receiver and the guide lamp, wherein the controller is configured to: identify an entry of the vehicle into a parking lot based on a GNSS signal acquired by the GNSS receiver; and control the guide lamp to display a light line representing a path to be travelled by the vehicle and an area to be occupied by the vehicle on a road ahead of the vehicle based on the entry of the vehicle into the parking lot.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: August 22, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Kijun Sung
  • Patent number: 11733697
    Abstract: A controller for an autonomous motive entity which comprises a neural processor (6) and a mechanical switch (20), and the switch capable of being set to one of at least three conditions (4b;5b;11), each condition indicative of a respective mode of operation of the controller, and the controller comprising three modules which each comprise respective instructions (4e, 4a, 5a) to implement a respective mode of operation of the entity, wherein one of the three modes is that in which the entity is caused to become disabled.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: August 22, 2023
    Inventor: Simon Poole-Anderson
  • Patent number: 11717959
    Abstract: Deep machine learning methods and apparatus related to semantic robotic grasping are provided. Some implementations relate to training a training a grasp neural network, a semantic neural network, and a joint neural network of a semantic grasping model. In some of those implementations, the joint network is a deep neural network and can be trained based on both: grasp losses generated based on grasp predictions generated over a grasp neural network, and semantic losses generated based on semantic predictions generated over the semantic neural network. Some implementations are directed to utilization of the trained semantic grasping model to servo, or control, a grasping end effector of a robot to achieve a successful grasp of an object having desired semantic feature(s).
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: August 8, 2023
    Assignee: GOOGLE LLC
    Inventors: Eric Jang, Sudheendra Vijayanarasimhan, Peter Pastor Sampedro, Julian Ibarz, Sergey Levine
  • Patent number: 11713776
    Abstract: An actuation pressure to actuate one or more hydraulic actuators may be determined based on a load on the one or more hydraulic actuators of a robotic device. Based on the determined actuation pressure, a pressure rail from among a set of pressure rails at respective pressures may be selected. One or more valves may connect the selected pressure rail to a metering valve. The hydraulic drive system may operate in a discrete mode in which the metering valve opens such that hydraulic fluid flows from the selected pressure rail through the metering valve to the one or more hydraulic actuators at approximately the supply pressure. Responsive to a control state of the robotic device, the hydraulic drive system may operate in a continuous mode in which the metering valve throttles the hydraulic fluid such that the supply pressure is reduced to the determined actuation pressure.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: August 1, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Michael Murphy, John Aaron Saunders, Steven Potter
  • Patent number: 11704902
    Abstract: Disclosed embodiments include apparatuses, systems, and methods for determining a field in a path of travel of a vehicle for detection of objects in the path of travel. In an illustrative embodiment, an apparatus includes a path identifier configured to identify a path of travel for a vehicle. At least one camera is disposed on the vehicle and is configured to capture image data of an area including the path of travel. A region of interest selector is configured to select a region of interest within the image data. A horizon identifier is configured to identify a horizon in the image data. A field determiner is configured to project the horizon onto the region of interest to isolate a field specified by the path of travel and the horizon, the field being evaluatable for the presence of objects in the path of travel of the vehicle.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: July 18, 2023
    Assignee: Rivian IP Holdings, LLC
    Inventors: Vikram Appia, Umit Batur, Qian Song
  • Patent number: 11697201
    Abstract: An exoskeleton system includes a first exoskeleton unit configured to support a first body part, a second exoskeleton unit configured to support a second body part, and a control device. The first exoskeleton unit and the second exoskeleton unit are mechanically decoupled from each other. The control device is configured to control, based on a control model, at least one of the first exoskeleton unit and the second exoskeleton unit. The control model is based on a multibody system that models the first exoskeleton unit, the second exoskeleton unit, and at least one of the first body part and the second body part.
    Type: Grant
    Filed: May 9, 2020
    Date of Patent: July 11, 2023
    Assignee: Universitaet Stuttgart
    Inventors: Joerg Siegert, Urs Schneider
  • Patent number: 11667380
    Abstract: A light-based measurement system is capable of directing a light beam to a cooperative target used in conjunction with a cable robot to accurately control the position of the end effector within a large volume working environment defined by a single coordinate system. By measuring the end effector while the device is in operation, the cable robot control system can be adjusted in real time to correct for errors that are introduced through the design of the robot itself providing accuracy in the tens or hundreds of micron range. A coordination processor runs control software that communicates with both the laser tracker and the cable robot. An action plan file is loaded by the software that defines the coordinate system of the working volume, the locations where actions need to be performed by the cable robot, and the actions to be taken.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: June 6, 2023
    Inventors: John M. Hoffer, Jr., Todd P. Wilson
  • Patent number: 11667278
    Abstract: A platooning control apparatus, a system including the same, and a method thereof are provided. disclosure The platooning control apparatus may include: a processor configured to determine a possibility of a collision during platooning, and when the possibility of the collision exists, perform collision avoidance control or braking control depending on whether an anti-lock brake system (ABS) is operated; and a storage configured to store data obtained by the processor and an algorithm for driving the processor, wherein the apparatus may calculate a depressurization amount of the braking pressure depending on a vehicle speed, a vehicle weight, and a state of a road surface when the avoidance control is possible during ABS operation, and may control eccentric braking depending on the depressurization amount of the braking pressure, to perform the avoidance control.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: June 6, 2023
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Jung Wan Kim
  • Patent number: 11660157
    Abstract: A medical navigation system is provided for controlling medical equipment during a medical procedure. The medical navigation system includes a passive radio frequency identification (RFID) tag, an RFID sensor for detecting the passive RFID tag, a controller coupled to the RFID sensor, and a robotic arm having an end effector and controlled by the controller. The RFID sensor provides a signal to the controller indicating presence of an activated passive RFID tag. The passive RFID tag has an antenna, an RFID circuit, and a switching device coupled to the RFID circuit for activating the passive RFID tag. The passive RFID tag is used to control a payload attached to the end effector.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 30, 2023
    Inventors: Kresimir Franjic, Kai Hynna, Joshua Richmond
  • Patent number: 11662220
    Abstract: A method for delivering information to a user terminal is provided. The method includes obtaining user data. The user data may include a plurality of user activity locations and corresponding user activity time. The method may further include identifying a first position and a second position based on the user activity locations and the user activity time, selecting a travel path based on the first position and the second position, determining a user activity area based on the selected travel path, and sending content to the user terminal based on the user activity area.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: May 30, 2023
    Assignee: Advanced New Technologies Co., Ltd.
    Inventors: Lei Pang, Depin Zhang
  • Patent number: 11661056
    Abstract: A lane keeping assist apparatus of a vehicle with a trailer, a system having the same, and a method thereof include a processor to request an advancing vehicle to control partial braking over the trailer of the advancing vehicle based on a lane departure amount of the advancing vehicle when the advancing vehicle departs from a lane.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: May 30, 2023
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Sang Jun Kim