Patents Examined by Jason Y Chong
  • Patent number: 11976244
    Abstract: A method may include: hydropyrolyzing a bio feedstock in a hydropyrolysis unit to produce at least a hydropyrolysis oil; introducing at least a portion of the hydropyrolysis oil with a hydrocarbon co-feed into a fluidized catalytic cracking unit; and cracking the hydropyrolysis oil in the fluidized catalytic cracking unit to produce at least fuel range hydrocarbons.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: May 7, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Xiaochun Xu, Yunming Fang, Yudi Zhao
  • Patent number: 11976036
    Abstract: Processes for producing n-heptane from a mixture of 1-hexene and 1-octene in the presence of a suitable isomerization-metathesis catalyst followed by a hydrogenation step are disclosed. Integrated manufacturing systems for producing n-heptane with minimal waste also are disclosed.
    Type: Grant
    Filed: June 21, 2023
    Date of Patent: May 7, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Jeffery C Gee, James Hillier, Kamaljeet Kaur, Ronald C. Smith, Darin B. Tiedtke, Mark L. Hlavinka
  • Patent number: 11951461
    Abstract: A solid acid catalyst has a macropore specific volume of about 0.30-0.50 ml/g, a ratio of macropore specific volume to specific length of catalyst particles of about 1.0-2.5 ml/(g·mm), and a ratio of specific surface area to length of catalyst particles of about 3.40-4.50 m2/mm. The macropore refers to pores having a diameter of more than 50 nm. An alkylation catalyst is based on the solid acid catalyst and can be used in alkylation reactions. The solid acid catalyst and alkylation catalyst show an improved catalyst service life and/or trimethylpentane selectivity when used in the alkylation of isoparaffins with olefins.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: April 9, 2024
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yongxiang Li, Xuhong Mu, Chengxi Zhang, Hexin Hu, Qiang Fu, Xingtian Shu
  • Patent number: 11951458
    Abstract: Bulk catalysts comprised of nickel, molybdenum, tungsten and titanium and methods for synthesizing bulk catalysts are provided. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: June 29, 2023
    Date of Patent: April 9, 2024
    Assignee: Chevron U.S.A. Inc.
    Inventors: Xiaoying Ouyang, Viorel Duma, Alexander Kuperman, Ibrahim Uckung, Theodorus Ludovicus Michael Maesen, Axel Brait, Charles Wilson
  • Patent number: 11939289
    Abstract: The selective dimerization of isoolefins, such as isobutene or isopentane, or mixtures thereof, may be conducted in a system including a series of fixed bed reactors and a catalytic distillation reactor. The system may provide for conveyance of the fixed bed reactor effluents, without componential separation, to a downstream reactor. It has been found that a high selectivity to the dimer may be achieved even though intermediate separation of the desired product from unreacted components between reactors is not performed. Further, embodiments provide for use of a divided wall column for recovery of a high purity dimer product, reducing unit piece count and plot size.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: March 26, 2024
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Rosette Barias, Liang Chen, Michael Jon Scott
  • Patent number: 11939527
    Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally pyrolysis wax comprising a naphtha/diesel fraction and heavy fraction, and char. The pyrolysis oil and wax is passed to a refinery FCC feed pretreater unit. A heavy fraction is recovered and sent to a refinery FCC unit, from which a C3 olefin/paraffin mixture fraction is recovered, which is passed to a steam cracker for ethylene production. In another embodiment, a propane fraction (C3) is recovered from a propane/propylene splitter and passed to the steam cracker.
    Type: Grant
    Filed: October 30, 2022
    Date of Patent: March 26, 2024
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Cameron McCord
  • Patent number: 11939540
    Abstract: Processes for producing olefins include integration of steam cracking with a dual catalyst metathesis process. The processes include steam cracking a hydrocarbon feed to form a cracking reaction effluent containing butenes, separating the cracking reaction effluent to produce a cracking C4 effluent including normal butenes, isobutene, and 1,3-butadiene, subjecting the cracking C4 effluent to selective hydrogenation to convert 1,3-butadiene in the cracking C4 effluent to normal butenes, removing isobutene from a hydrogenation effluent to produce a metathesis feed containing normal butenes, and contacting the metathesis feed with a metathesis catalyst and a cracking catalyst directly downstream of the metathesis catalyst to produce a metathesis reaction effluent.
    Type: Grant
    Filed: January 3, 2023
    Date of Patent: March 26, 2024
    Assignee: Saudi Arabian Oil Company
    Inventors: Sohel K Shaikh, Raed H Abudawoud, Zhonglin Zhang, Munir D Khokhar, Furqan Aljumah
  • Patent number: 11932597
    Abstract: A process for converting isobutane to propylene. The process including dehydrogenating isobutane to produce a mixed product stream comprising isobutane and isobutene, skeletal isomerizing the mixed product stream comprising isobutane and isobutene to convert isobutene to n-butenes including 1-butene and 2-butenes and to recover a skeletal isomerization reaction product comprising isobutane, isobutene, butadiene, 1-butene, and 2-butenes. The process further including fractionating the skeletal isomerization reaction product, isomerizing the 1-butene contained therein to 2-butenes, recovering an overhead fraction comprising isobutane, a side draw fraction comprising isobutane and isobutene, and a bottoms fraction comprising 2-butenes, and combining the bottoms fraction with ethylene and converting the ethylene and 2-butenes to produce a reaction effluent comprising propylene.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: March 19, 2024
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Martinus J. Almering, Kerman N. Dukandar, Oliver Chen
  • Patent number: 11926798
    Abstract: The present disclosure generally relates to the utilization of a fine mineral matter in the process of upgrading the liquid products obtained by thermolysis or pyrolysis of solid plastic waste or biomass or from cracking, coking or visbreaking of petroleum feedstocks. More particularly, the present disclosure is directed to a process of stabilization of the free-radical intermediates formed during thermal or catalytic cracking of hydrocarbon feedstocks including plastic waste and on a process of catalytic in-situ heavy oil upgrading. The fine mineral matter may be derived from natural sources or from synthetic sources.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: March 12, 2024
    Assignee: Radical Plastics Inc.
    Inventor: Yelena Kann
  • Patent number: 11920078
    Abstract: A process for producing olefins may include dehydrogenating a first alkane in a first reactor to produce a first effluent comprising at least one of a first n-olefin or a first diolefin; removing the first effluent from the first reactor; and regenerating the first reactor. The first reactor may include a first dehydrogenation catalyst and a first phase change material.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: March 5, 2024
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventor: Gary George Podrebarac
  • Patent number: 11912655
    Abstract: Processes and systems for upgrading natural gas liquids. At least a portion of the natural gas liquid components in a shale gas stream can be dehydrogenated to their corresponding olefin derivatives prior to separating any methane from the liquids. Further processing subsequent to dehydrogenation could include various separations, oligomerizing olefins produced in the dehydrogenation step, recovering desired products, etc. The order of the processing steps subsequent to dehydrogenation could be adjusted in various cases.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: February 27, 2024
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Rakesh Agrawal, Yiru Li
  • Patent number: 11898105
    Abstract: Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 13, 2024
    Assignee: UOP LLC
    Inventors: Krishan Pratap Jadaun, Andrea G. Bozzano, Krishna Mani, Stanley Joseph Frey
  • Patent number: 11898107
    Abstract: According to one or more embodiments described herein, a method for processing a hydrocarbon feedstock may include contacting the hydrocarbon feedstock and a product emulsion with supercritical carbon dioxide in a supercritical carbon dioxide extraction unit to form at least an extract emulsion and a pitch emulsion; contacting at least a portion of the pitch emulsion with supercritical water in a supercritical water gasification unit to form a gasified product; separating the gasified product into at least a product gas and the product emulsion, the product emulsion comprising water and one or more hydrocarbons; and recycling at least a portion of the product emulsion to the supercritical carbon dioxide extraction unit. Contacting the product emulsion with the supercritical carbon dioxide may break at least a portion of the product emulsion.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: February 13, 2024
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Joo-Hyeong Lee, Mohammed Saad Aldossary, Ali Mahmoud Al-Somali
  • Patent number: 11891576
    Abstract: Processes for obtaining substances from bark, especially bark high in suberin and lignin, which substances can be used for preparing biofuels are disclosed. The processes use a solvent system for dissolving the substances, which system can be recycled in the process. The solvent system comprises a base selected from tertiary aliphatic amines A composition comprising bark and the solvent system, which can be used in the processes, is also disclosed.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: February 6, 2024
    Assignee: KAT2BIZ AB
    Inventors: Joseph Samec, Ivan Kumaniaev
  • Patent number: 11884885
    Abstract: A process is provided for producing a liquid hydrocarbon material suitable for use as a fuel or as a blending component in a fuel. The process includes co-processing a pyrolysis oil derived from a waste plastic raw material and a biorenewable feedstock comprising triglycerides in a catalytic cracking process in a presence of a solid catalyst at catalytic cracking conditions to provide a cracking product. The cracking product may be fractionated to provide at least one of a gasoline fraction and a middle distillate fraction.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 30, 2024
    Inventors: Tengfei Liu, Joel Edward Schmidt, Richard Grove, Hye-Kyung Cho Timken
  • Patent number: 11878292
    Abstract: An improved MFI zeolite having low aluminum occupation at intersection sites characterized by an ortho-xylene to para-xylene uptake ratio of 0.1 to about 0.55. Processes for converting hydrocarbon or oxygenate to a product comprising light olefins and/or aromatics using the improved MFI zeolite as catalyst are also disclosed. Para-xylene in the product may be greater than about 24% of the xylenes.
    Type: Grant
    Filed: February 28, 2023
    Date of Patent: January 23, 2024
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Jaime G. Moscoso, Lijun Xu, Xi Zhao
  • Patent number: 11879103
    Abstract: In accordance with one or more embodiments of the present disclosure, a method for producing aromatic compounds from pyrolysis gasoline includes splitting the pyrolysis gasoline into a stream comprising non-aromatic hydrocarbons and a stream comprising paraffinic hydrocarbons and aromatic hydrocarbons; aromatizing the stream comprising paraffinic hydrocarbons and aromatic hydrocarbons, thereby converting the stream comprising paraffinic hydrocarbons and aromatic hydrocarbons to a first stream comprising benzene-toluene-xylenes (BTX); hydrotreating the first stream comprising BTX in a selective hydrotreatment unit, thereby producing a de-olefinated stream comprising BTX; hydrodealkylating and transalkylating the de-olefinated stream comprising BTX in a hydrodealkylation-transalkylation unit, thereby producing a second stream comprising BTX, the second stream comprising BTX having a greater amount of benzene and xylenes than the first stream comprising BTX; and processing the second stream comprising BTX in an
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: January 23, 2024
    Assignee: Saudi Arabian Oil Company
    Inventors: Noor Nasser Al-Mana, Zhonglin Zhang, Sameer Al-Ghamdi, Omer Refa Koseoglu, Sohel Shaikh
  • Patent number: 11858892
    Abstract: A process of removing methanol, CO2, or both from a hydrocarbon stream is described. The process uses an adsorbent comprising binderless type 3A zeolite. The adsorbent has high methanol removal capacity and low olefin co-adsorption capacity, as well as low reactivity in an olefin stream. This allows reduced adsorbent loading while maintaining downstream catalyst performance and product quality. The adsorbent comprises a type 3A zeolite comprising less than 5% of a binder and an ion exchange ratio of 30% to 70%. The adsorption process can obtain an outlet methanol content of 1 ppmw or less.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: January 2, 2024
    Assignee: UOP LLC
    Inventors: Qing Xu, Zhe Lin, Lu Wang
  • Patent number: 11840491
    Abstract: Systems for preparing butenes are provided. The systems can include a reactor inlet coupled to both a reactor and at least one reactant reservoir; at least one of the reactant reservoirs containing one or both of an aldehyde and/or ethanol; a catalyst within the reactor, the catalyst comprising a metal component and an acidic support material; and a reactor outlet operationally configured to convey a butene-rich reaction product to a product reservoir. Methods for preparing butenes are also provided. The methods can include exposing one or both of ethanol and/or an aldehyde to a catalyst comprising a metal component and an acidic support to form a butene-rich product that comprises one or both of 1-butene and/or 2-butene.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: December 12, 2023
    Assignee: Battelle Memorial Institute
    Inventors: Vanessa Dagle, Robert A. Dagle
  • Patent number: 11807816
    Abstract: Systems and methods for the catalytic cracking of light hydrocarbons, such as naphtha, to form light olefins and aromatics is disclosed. The systems and methods may include a catalytic cracking process that involves mixing catalyst with a gas and then this mixture is used to contact a hydrocarbon feed, e.g., light straight run naphtha or heavy straight run naphtha. The hydrocarbon feed may be mixed with dry gas such as methane and/or hydrogen to dilute the hydrocarbon feed, before the hydrocarbon feed is contacted with the catalyst/gas mixture.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: November 7, 2023
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Khalid A. Al-Majnouni, Nabil Al-Yassir, Naif Aldalaan, Ahmed Al-Zenaidi, Khalid Almusaiteer