Patents Examined by Jeff A. Burke
  • Patent number: 11911919
    Abstract: A method performed by a computing system is presented. The method may include the computing system receiving image information that represents an object surface associated with a flexible object, and identifying, as a grip region, a surface region of the object surface that satisfies a defined smoothness condition and has a region size that is larger than or equal to a defined region size threshold, wherein the grip region is identified based on the image information. The method may further include identifying, as a safety region, a three-dimensional (3D) region which surrounds the grip region in one or more horizontal dimensions, and which extends from the grip region along a vertical dimension that is perpendicular to the one or more horizontal dimensions. The method may further include performing robot motion planning based on the grip region and the safety region.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: February 27, 2024
    Assignee: MUJIN, INC.
    Inventors: Jose Jeronimo Moreira Rodrigues, Rosen Nikolaev Diankov, Jinze Yu, Ahmed Abouelela, Yoshiki Kanemoto
  • Patent number: 11904481
    Abstract: A remote control system includes: an imaging unit that shoots an environment in which a device to be operated including an end effector is located; a recognition unit that recognizes objects that can be grasped by the end effector based on a shot image of the environment shot by the imaging unit; an operation terminal that displays the shot image and receive handwritten input information input to the displayed shot image; and an estimation unit that, based on the objects that can be grasped and the handwritten input information input to the shot image, estimates an object to be grasped which has been requested to be grasped by the end effector from among the objects that can be grasped and estimates a way of performing a grasping motion by the end effector, the grasping motion having been requested to be performed with regard to the object to be grasped.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: February 20, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takashi Yamamoto
  • Patent number: 11904938
    Abstract: Systems, methods, and computer program products for guiding vehicles. A vehicle control system detects obstacles and avoids contact between the vehicle, and the obstacles by solving a path planning problem using a four-phase system. In a parking scenario, switching control laws are used to drive the vehicle to a target line, and a forward path segment and a reverse path segment defined. The two path segments are connected along the target line to define a path for entering or exiting the parking space. Objects in a driving environment may be avoided by identifying an obstacle corner, defining an avoidance circle (62), (185) around the obstacle corner, and determining a path that allows the vehicle to avoid penetrating the avoidance circle. A line-of-sight guidance method may be used to follow the path by defining target points on the path at a lookout distance l, and steering the vehicle using the target points.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 20, 2024
    Assignee: Ohio University
    Inventors: Jianchao Zhu, Letian Lin
  • Patent number: 11905682
    Abstract: Provided is a wheel loader capable of automatically decreasing vehicle speed without making an operator feel discomfort during a loading operation. A wheel loader 1 mounted with a torque converter type traveling drive system comprises a controller 5 configured to control shifting of a transmission 32. When a vehicle body travels forward at vehicle speed corresponding to a second speed stage set greater by one speed stage than the lowest speed stage of the transmission 32 while operating the lift arm 21 upwardly, the controller 5 sets, as a gear ratio of the transmission 32, an intermediate gear ratio between a gear ratio corresponding to the second speed stage and a gear ratio corresponding to a first speed stage, and outputs a signal for selecting a combination of a plurality of gears corresponding to the set gear ratio to each first to fifth solenoid control valves 32A to 32E.
    Type: Grant
    Filed: December 25, 2019
    Date of Patent: February 20, 2024
    Assignee: HITACHI CONSTRUCTION MACHINERY CO., LTD.
    Inventors: Tetsuji Tanaka, Masaki Nukii, Keisuke Naitou
  • Patent number: 11903667
    Abstract: A method for engaging and disengaging a surgical instrument of a surgical robotic system including receiving a sequence of user inputs from one or more user interface devices of the surgical robotic system; determining, by one or more processors communicatively coupled to the user interface devices and the surgical instrument, whether the sequence of user inputs indicates an intentional engagement or disengagement of a teleoperation mode in which the surgical instrument is controlled by user inputs received from the user interface devices; in response to determining of engagement, transition the surgical robotic system into the teleoperation mode; and in response to determining of disengagement, transition the surgical robotic system out of the teleoperation mode such that the user interface devices are prevented from controlling the surgical instrument.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: February 20, 2024
    Assignee: Verb Surgical Inc.
    Inventors: Taylor Joseph Cone, Joan Savall, Anette Lia Freiin von Kapri, Eric Mark Johnson
  • Patent number: 11904478
    Abstract: A simulation device includes an image sensor which captures an image of a real space including an actual robot and a peripheral device arranged at the periphery of the actual robot, an augmented reality display section which displays a virtual robot overlaid on the actual robot shown in the captured image, a workpiece management section which manages a position of a moving workpiece, and a motion control section which controls a motion of the virtual robot on the basis of the position of the workpiece.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: February 20, 2024
    Assignee: FANUC CORPORATION
    Inventors: Masafumi Ooba, Taiki Katagiri
  • Patent number: 11904872
    Abstract: Systems, apparatus, methods, and techniques for an ego vehicle to respond to detecting misbehaving information from remote vehicles are provided. An ego vehicle, in addition to reporting misbehaving vehicles to a misbehavior authority via a vehicle-to-anything communication network, can, take additional actions based in part on how confident the ego vehicle is about the evidence of misbehavior. Where the confidence is high the ego vehicle can simply discard the misbehaving data and provide an alternative estimate for such data from alternative sources. Where the confidence is not high the ego vehicle can request assistance from neighboring vehicles and roadside units to provide independent estimates of the data to increase confidence in the evidence of misbehavior.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Xiruo Liu, Liuyang Yang, Manoj Sastry, Marcio Juliato, Shabbir Ahmed, Christopher Gutierrez
  • Patent number: 11897140
    Abstract: A system and method of operating a mobile robot to perform tasks includes representing a task in an Object-Oriented Partially Observable Markov Decision Process model having at least one belief pertaining to a state and at least one observation space within an environment, wherein the state is represented in terms of classes and objects and each object has at least one attribute and a semantic label. The method further includes receiving a language command identifying a target object and a location corresponding to the target object, updating the belief associated with the target object based on the language command, driving the mobile robot to the observation space identified in the updated belief, searching the updated observation space for each instance of the target object, and providing notification upon completing the task. In an embodiment, the task is a multi-object search task.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 13, 2024
    Assignee: BROWN UNIVERSITY
    Inventors: Arthur Richard Wandzel, Stefanie Tellex
  • Patent number: 11897466
    Abstract: A vehicle control apparatus may include: a profile generator that generates at least one speed profile including a hysteresis section, in which deceleration and acceleration due to coasting of a vehicle are repeated, based on an environmental condition of the vehicle; a profile selector that selects a speed profile, which satisfies a predetermined condition, from among the at least one speed profile; and a controller that controls a speed of the vehicle depending on the speed profile selected by the profile selector.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: February 13, 2024
    Assignees: HYUNDAI MOTOR COMPANY, KIA CORPORATION
    Inventor: Hee Gwon Kim
  • Patent number: 11897478
    Abstract: Embodiments described herein provide a method for using one or more audio signals from one or more sensors to establish the presence and severity of precipitation at a particular location. Methods may include: receiving at least one first audio signal from a first audio sensor of a vehicle; extracting acoustical features including frequency and amplitude from the at least one first audio signal; receiving at least one second audio signal from a second audio sensor of the vehicle; extracting acoustical features including frequency and amplitude from the at least one second audio signal; processing the frequency and amplitude from the at least one first audio signal and the frequency and amplitude from the at least one second audio signal as inputs to an algorithm to generate an output from the algorithm; and determining, from the output of the algorithm, a precipitation condition and a confidence measure of the precipitation condition.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: February 13, 2024
    Assignee: HERE GLOBAL B.V.
    Inventors: Leon Stenneth, Bruce Bernhardt, Advait Raut
  • Patent number: 11900747
    Abstract: Methods and enhanced apparatus used in such methods are described that a dispatched logistics operation for a deliverable item from a hold-at-location (HAL) logistics facility having a secured storage and using a modular autonomous bot apparatus assembly and a dispatch server. The bot apparatus assembly picks up and delivers the item from the HAL facility in response to a delivery dispatch command from the dispatch server. In response, the MAM of the bot verifies compatibility of modular components for the operation, controls receiving of the deliverable item from the secured storage at the HAL facility, then autonomously causes movement to the delivery destination. The MAM notifies the customer before delivery of the approaching delivery, authenticates delivery is to the authorized customer, provides access to the item within the bot apparatus assembly, monitors unloading of the item, then autonomously moves back to the HAL facility.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: February 13, 2024
    Assignee: FEDEX CORPORATE SERVICES, INC.
    Inventors: Ole-Petter Skaaksrud, Frank Mayfield, Daniel Gates
  • Patent number: 11897505
    Abstract: This document discloses system, method, and computer program product embodiments for operating an autonomous vehicle (AV). For example, the method includes performing the following operations by a muxing tool when AV is deployed within a particular geographic area in a real-world environment: receiving perception data that is representative of at least one actual object which is perceived while AV is deployed within the particular geographic area in a real-world environment; receiving simulation data that represents a simulated object that could be perceived by AV in the real-world environment and that was generated using a simulation scenario which is selected from a plurality of simulation scenarios based on at least one of the particular geographic area in which AV is currently located and a current operational state of AV; and generating augmented perception data by combining the simulation data with the perception data.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: February 13, 2024
    Assignee: Argo AI, LLC
    Inventors: Arjuna Ariyaratne, Thomas Carl Ackenhausen, Patrick Michael Carmody
  • Patent number: 11897451
    Abstract: Provided is an apparatus for controlling a vehicle, the apparatus including: a communicator configured to receive a setting value signal related to at least one of a first setting value, a second setting value, or a third setting value that are set in advance from a user terminal, and transmit a signal to the user terminal; and a controller configured to control at least one of a travelling device, a braking device, or a steering device based on the at least one of the first setting value, the second setting value, or the third setting value that are set in advance.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: February 13, 2024
    Assignee: HL MANDO CORPORATION
    Inventors: Yunsun Choi, Minsang Seong, Yongjoon Lee, Jaegon Lee
  • Patent number: 11897135
    Abstract: An aspect of the present invention prevents a robot from being subjected to an excessive load even when operated by an inexperienced user. Provided is a human-cooperative robot system including a robot and a control device that controls the robot. The robot is provided with a sensor that detect an external force applied to the robot. The control device stops the operation of the robot when the detected external force is equal to or greater than a first threshold, and issues a warning when the detected external force is equal to or greater than a second threshold exceeding the first threshold.
    Type: Grant
    Filed: July 5, 2019
    Date of Patent: February 13, 2024
    Assignee: FANUC CORPORATION
    Inventors: Tsuyoshi Hannya, Manabu Hirakawa
  • Patent number: 11892841
    Abstract: A set of sensor information may include first sensor information generated based on a first sensor of a first vehicle and second sensor information generated based on a second sensor of a second vehicle. Individual sensor information may characterize positions of objects in an environment of individual sensors. Relevant sensor information for a vehicle may be determined based on the set of sensor information and a position of the vehicle. The relevant sensor information may characterize positions of objects in a maneuver environment of the vehicle. A desired navigation of the vehicle in the maneuver environment of the vehicle may be determined based on the relevant sensor information. An instruction may be provided to the vehicle based on the desired navigation of the vehicle. The instruction may characterize one or more maneuvers to be performed by the vehicle to execute the desired navigation.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: February 6, 2024
    Assignee: Pony AI Inc.
    Inventors: Jianan Wang, Nengxiu Deng, Xiang Yu, Tiancheng Lou, Jun Peng, Kai Chen, Hao Song
  • Patent number: 11892319
    Abstract: An inertial measurement unit (IMU) self-test system includes an IMU and a control circuit. The control circuit is configured to receive IMU data collected by the IMU and inputs from systems external to the IMU indicative of mechanical stimulus, wherein the control circuit utilizes IMU data collected in response to the mechanical stimulus to determine IMU validity.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: February 6, 2024
    Assignee: Aptiv Technologies AG
    Inventors: Christopher David Ruppel, David Jerold Imboden, Jerry Keith Fennell
  • Patent number: 11891061
    Abstract: A lateral virtual boundary for a host vehicle is identified based on a lateral distance between the host vehicle and a target vehicle, a longitudinal distance between the host vehicle and the target vehicle, and a speed of the target vehicle relative to the host vehicle. A forward virtual boundary for the host vehicle is identified based on the longitudinal distance between the host vehicle and the target vehicle. A lateral constraint value of the lateral virtual boundary and a forward constraint value of the forward virtual boundary are determined. A longitudinal acceleration and a steering angle are determined based on the lateral and forward virtual boundaries and the lateral and forward constraint values. One or both of a steering component or a brake are actuated based on the longitudinal acceleration and the steering angle.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: February 6, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Yousaf Rahman, Hongtei Eric Tseng, Mrdjan J. Jankovic
  • Patent number: 11890072
    Abstract: A robotic surgical system includes a controller configured or programmed to change a length between a first axis and a second axis in a direction in which a shaft extends, the length serving as a control parameter, according to a rotation speed of the shaft with respect to an amount of operation to control operation of a surgical instrument.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: February 6, 2024
    Assignees: KAWASAKI JUKOGYO KABUSHIKI KAISHA, MEDICAROID CORPORATION
    Inventors: Yuichi Mizohata, Nobuyasu Shimomura, Ayataka Kobayashi
  • Patent number: 11891092
    Abstract: An emergency maneuver control system includes a path planning control device, which is designed to determine an emergency maneuver trajectory in a highly automated or autonomous operating mode of the vehicle; a longitudinal guidance actuator control device which is coupled to the path planning control device and is designed to provide longitudinal guidance control commands derived from the emergency maneuver trajectory and, in the event of an emergency maneuver situation, to cause the at least one longitudinal guidance actuator to execute the longitudinal guidance control commands; and a transverse guidance actuator control device which is coupled to the path planning control device and is designed to provide transverse guidance control commands derived from the emergency maneuver trajectory and, in the event of an emergency maneuver situation, to cause the at least one transverse guidance actuator to execute the transverse guidance control commands.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: February 6, 2024
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Martin Kuemmel, Karl-Heinz Meitinger
  • Patent number: 11891118
    Abstract: Provided are a vehicle control device, a vehicle control method, and non-transitory storage medium. The vehicle control device includes: an acquisition part, acquiring a positional relationship between a vehicle and a lane; a control part, performing in-lane travel control that causes an actuator included in a steering device of the vehicle to output a force for causing the vehicle to travel in the lane within a range not exceeding an upper limit based on the positional relationship; and an upper limit adjustment part, adjusting the upper limit in a predetermined case, in which the upper limit adjustment part switches a change rate of the upper limit in response to a change of state of an operator that accepts a steering operation performed by an occupant of the vehicle.
    Type: Grant
    Filed: September 12, 2021
    Date of Patent: February 6, 2024
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yoshihiro Oniwa