Patents Examined by Jermaine L Jenkins
  • Patent number: 11879801
    Abstract: A controller for an environmental sensor provides digital environmental measurement values from analog environmental measurements performed by analog circuitry, the digital environmental measurement values lying in a global scale range. The controller subjects the global scale range to a subdivision into scale subranges that are proper subranges of the global scale range. The controller selects, among the scale subranges, one scale subrange in which an analog environmental measurement is to be performed, selects an offset information and a gain information that are associated with the selected scale subrange and that are indicative of an offset and a gain to be applied by the analog circuitry to perform an analog environmental measurement in the selected scale subrange, and to provide the offset information and the gain information to the analog circuitry.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: January 23, 2024
    Assignee: Infineon Technologies AG
    Inventors: Andreas Wiesbauer, Alessandro Caspani, Christian Jenkner, Athanasios Kollias
  • Patent number: 11860055
    Abstract: A pressure sensor and method of manufacturing the like are provided for determining a pressure of a fluid. An example pressure sensor includes a pressure sensor housing sealably attached to a diaphragm at a first end. The header includes a lip configured to engageably fit with the second end of the pressure sensor housing to create a hermetically sealed component compartment. The header also includes header pin(s) configured to transmit electrical signals between an interior and an exterior of the hermetically sealed component compartment. A sensing element and a processor are disposed within the hermetically sealed component compartment and in communication with one another. The sensing element is mounted to the processor within the hermetically sealed compartment. The corresponding method of manufacture is also provided.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: January 2, 2024
    Assignee: Honeywell International Inc.
    Inventors: Vishal Shalitkumar Kusanale, Todd Eckhardt, Palani Thanigachalam, Vignesh Murugesan
  • Patent number: 11851322
    Abstract: A sensor package comprises a MEMS sensor chip, a cover arranged over a first main surface of the MEMS sensor chip, said cover being fabricated from a mold compound, and an electrical through contact extending through the cover and to electrically couple the sensor package to a circuit board arranged over the cover.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: December 26, 2023
    Assignee: Infineon Technologies AG
    Inventors: Rainer Markus Schaller, Jochen Dangelmaier
  • Patent number: 11835421
    Abstract: Sensor assemblies and systems comprise a housing configured with an electrical sensor device retained therein to protect the sensor device. The housing may include display indicia relating to some aspect of the sensor assembly. The electrical sensor device include electrical components useful for the purpose of monitoring and transmitting desired data relating to operating parameters/conditions of the dynamic article that the sensor assembly is attached with. The data is transmitted wirelessly from the electrical sensor device. The housing is removably attached with a retaining member that is also attached with the dynamic article or an element connected thereto. A receiver external from the dynamic article receives the data to determine such operating parameter/or conditions, when the dynamic article is a vehicle tire, as outside diameter, tread depth, pressure, radial load, vehicle camber and/or toe alignment variations, and tire/vehicle location, which may be stored.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: December 5, 2023
    Inventor: Keith George Ferry
  • Patent number: 11834195
    Abstract: An example system includes a common mode pneumatic event detector to detect a common mode pneumatic event at pitot tubes of an aircraft, a latch, a relay switch in communication with the latch, and a latch controller to set the latch in a first state to cause the latch to output a first latch signal, the relay switch to output a first pressure signal in response to the first latch signal, the first pressure signal based on pressure data from the pitot tubes, and set the latch in a second state to cause the latch to output a second latch signal based on the detection of the common mode pneumatic event. The relay switch is to output a second pressure signal in response to the second latch signal. The second pressure signal includes estimated pressure data.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: December 5, 2023
    Assignee: The Boeing Company
    Inventors: Sherwin Chunshek Li, Leonard John Inderhees, Russell T. Bridgewater, Robert Erik Freeman, Rostyslav Oleksiy Svitelskyi, William Tyler Piersol
  • Patent number: 11835409
    Abstract: A pressure sensor apparatus and a method of operating the pressure sensor apparatus can include a hybrid pressure switch having a single switching point, the hybrid pressure switch comprising: a mechanical pressure switch; and an electronic pressure sensor, wherein the hybrid pressure switch monitors a media pressure with the mechanical pressure switch providing a switching function and the electronic pressure sensor providing a continuous pressure measurement with respect to the media pressure based on a continuous pressure output signal. The switching function can comprise a fail-safe switching function or a non-fail-safe switching function.
    Type: Grant
    Filed: December 26, 2020
    Date of Patent: December 5, 2023
    Assignee: Honeywell International Inc.
    Inventors: Christian Ruwe, Thomas Lampe, Tobias Otterpohl, Thomas Heyen, David Kucera
  • Patent number: 11835544
    Abstract: Realized is a device capable of measuring a wind speed and a wind direction with high precision while reducing the effect of ambient noise. The device includes an acoustic wave transmitting section that transmits a measurement acoustic wave, an acoustic wave receiving section that receives the measurement acoustic wave transmitted from the acoustic wave transmitting section, a signal selecting section that determines a characteristic of the measurement acoustic wave, and a wind speed calculating section that calculates a wind speed by analyzing a signal received by the acoustic wave receiving section. The signal selecting section selects, as the measurement acoustic wave, an acoustic wave that includes a low-intensity frequency bandwidth selected from a noise signal which the acoustic wave receiving section receives when the measurement acoustic wave is not transmitted.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: December 5, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Naoya Haneda
  • Patent number: 11821991
    Abstract: Disclosed is in the present disclosure a dynamic compensation wind measurement lidar system, including a laser, an A/D converter, a signal processor, and a data processor. The signal processor includes a power spectrum calculation module, a motion sensor, and a pulse integration module. The pulse integration module divides an optical pulse transmitted in a single beam period into n sections for integration, where real-time motion and attitude data collected by the motion sensor is added to each of the sections for integration to improve a signal-to-noise ratio by integrating a power spectral density for a plurality of periodic pulse signals. In the present disclosure, by means of integrating optical pulses in single-beam dwell time by sections and attitude superimposing, an attitude compensation frequency may be greatly increased, and the attitude compensation frequency is adjustable.
    Type: Grant
    Filed: April 12, 2023
    Date of Patent: November 21, 2023
    Assignee: Nanjing Movelaser Co., Ltd.
    Inventors: Jianwei Shao, Hailong Zhu, Zengli Xiao, Zhi Li, Chen Deng
  • Patent number: 11815272
    Abstract: A method for providing a warning of the risk of Legionella in a fluid conductor, the method including determining the percentage of a duration a fluid is disposed in the fluid conductor at a temperature in which Legionella can thrive during a period, wherein if the percentage of the duration is greater than about 50% of the period, a first indication of a risk of Legionella is raised.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: November 14, 2023
    Assignee: Intellihot, Inc.
    Inventors: Sridhar Deivasigamani, Sivaprasad Akasam
  • Patent number: 11796559
    Abstract: The present invention relates to a device, a system and a method for monitoring river flow velocity based on differential pressure measurement, comprising: a hull floating on a water surface with an aspect ratio of the hull being greater than one, characterized in that pressure sensors are respectively provided on an upstream face of a front end and a downstream face of a rear end below the floatation line of a ship; an electronic instrument is provided in the hull, and the electronic instrument comprises an acquisition module connected to the two pressure sensors, the acquisition module being connected to a data processing module with a memory, and the data processing module being connected to a satellite positioning module and a wireless communication module.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: October 24, 2023
    Assignee: CHINA INSTITUTE OF WATER RESOURCES AND HYDROPOWER RESEARCH
    Inventors: Wenqi Peng, Yongsheng Zhang, Xiaobo Liu, Xuekai Chen, Weijie Wang, Fei Dong
  • Patent number: 11796411
    Abstract: A sensor includes a housing having a accommodating room, a flexible plate provided in the accommodating room and moveable to induce a medium pressure change in the accommodating room, and a pressure sensing component for sensing the pressure change. The pressure sensing component and the flexible plate are assembled and moveable together. In the sensor of the present invention, after an external signal to be sensed is transmitted to the sensor, the flexible plate moves to induce air disturbances, and then the pressure sensing component receives a pressure change induced by the air disturbances and performs signal sensing. Compared with the conventional sound sensor, the sensor of the present invention provides no opening communicating with the external environment. Therefore, the impact of foreign objects, noise and other environmental factors on the sensor can be avoided, and the signal generated by the object not to be sensed can be effectively reduced.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: October 24, 2023
    Assignee: GETTOP ACOUSTIC CO., LTD.
    Inventors: Kuan-Hong Hsieh, Shih-Chia Chiu, Sung-Cheng Lo, Bo-Cheng You, Chun-Kai Chan, Wei-Leun Fang
  • Patent number: 11788912
    Abstract: A micromechanical pressure sensor device and a corresponding manufacturing method. The micromechanical pressure sensor device is equipped with a sensor substrate; a diaphragm system that is anchored in the sensor substrate and that includes a first diaphragm and a second diaphragm situated spaced apart therefrom, which are circumferentially connected to one another in an edge area and enclose a reference pressure in an interior space formed in between; and a plate-shaped electrode that is suspended in the interior space and that is situated spaced apart from the first diaphragm and from the second diaphragm and forms a first capacitor with the first diaphragm and forms a second capacitor with the second diaphragm. The first diaphragm and the second diaphragm are designed in such a way that they are deformable toward one another when acted on by an external pressure.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 17, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Heribert Weber, Peter Schmollngruber
  • Patent number: 11788932
    Abstract: A device for nondestructive viscoelastic characterization of materials, comprising: a tubular shell, having inside a through-recess provided with at least a first and a second shrinkage; a first rod, provided with a base of ferromagnetic material (8), sliding inside said shell between a first position, in which said ferrule does not project to the lower base of said shell, and a second position, in which said ferrule projects to said lower base; a first spring configured to push said ferrule outwards; a displacement sensor configured to read the displacement of said first rod; a button, sliding-between a stroke greater than the one of said first rod, and integral to a second rod provided with a magnet and coaxial to said first rod; a second spring.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: October 17, 2023
    Inventors: Francesco Timpone, Aleksandr Sakhnevych, Flavio Farroni
  • Patent number: 11782187
    Abstract: A method is provided of calculating the total amount of artificial precipitation in a seeded area compared to a non-seeded area, which is capable of increasing the reliability of quantitative determination of seeding effect, observation data, and numerical model prediction data obtained from artificial precipitation experiments, of increasing the amount of water resources through weather modification experiments, of accomplishing various effects (drought reduction, forest fire prevention, fine dust reduction, fog reduction, hail suppression, etc.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: October 10, 2023
    Assignee: National Institute of Meteorological Sciences
    Inventors: Yonghun Ro, Ki-Ho Chang, Joo-Wan Cha, Sanghee Chae, Woonseon Jung, Chulkyu Lee
  • Patent number: 11767218
    Abstract: According to an example aspect of the present invention, there is provided a MEMS pressure sensor, comprising: a sensor portion comprising a deformable membrane and a first volume, and a valve portion comprising a first output to a first side of the pressure sensor and a second output to a second side of the pressure sensor. The valve portion is operable to close the second output and open the first output to equalize pressure in the first volume with pressure at the first side of the pressure sensor for calibrating the sensor; and close the first output and open the second output to equalize pressure in the first volume with pressure at the second side of the pressure sensor for pressure measurement.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 26, 2023
    Assignee: Teknologian tutkimuskeskus VTT Oy
    Inventors: Tapio Pernu, Jukka Kyynäräinen, Jaakko Saarilahti
  • Patent number: 11768123
    Abstract: A pressure sensor includes a cylindrical member configured to be attached to a body having a fluid passage, and a pressure sensor unit connected to the cylindrical member for detecting a pressure of a fluid flowing through the fluid passage, wherein the cylindrical member is made of a nickel-molybdenum-chromium alloy material or a stainless steel material, wherein the pressure sensor unit includes a sensor body closed at one end with a diaphragm and a pressure detecting element for outputting displacement of the diaphragm as pressure, and wherein the sensor body is made of a cobalt-nickel alloy material, and is connected at an opening side end portion to one end portion of the cylindrical member.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: September 26, 2023
    Assignee: FUJIKIN INCORPORATED
    Inventors: Atsushi Hidaka, Takatoshi Nakatani, Nobukazu Ikeda, Kouji Nishino, Ryousuke Dohi
  • Patent number: 11767841
    Abstract: The present invention provides wireless sensor technology seamlessly integrated into a pump system having a pump, a motor and a drive, has diagnostic and prognostic intelligence that utilizes sensor data, allows real-time condition monitoring; enables easy access to data and analytics via smart devices (i.e., smart phones and tablets); allows for easy remote monitoring (i.e., web portal) of the pump system; allows self-learning artificial intelligence (AI) built-in that adapts to changing conditions; and allows for smart pump system remote control. In operation, the present invention monitors the health and performance of the pump system that allows the user to get real-time data and intelligence virtually anywhere and anytime, as well as real-time diagnostics and prognostics, and also allows for smart control of the pump system remotely via smart device, and reduces downtime of equipment.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: September 26, 2023
    Assignee: ITT MANUFACTURING ENTERPRISES LLC
    Inventors: Bradley Decook, Daniel Kernan
  • Patent number: 11761836
    Abstract: A system and a method for evaluating atomization efficiency of a wind-driven atomizer. The system for evaluating atomization efficiency of a wind-driven atomizer comprises a detection platform, a wind tunnel mechanism and a traction measurement mechanism are arranged above the detection platform, the traction measurement mechanism is disposed beside the wind outlet end of the wind tunnel mechanism, an atomizer mechanism and an atomization measurement mechanism are sequentially disposed on the detection platform along the direction of a wind field provided by the wind tunnel mechanism, and the atomizer mechanism is connected with the traction measurement mechanism. The system and the method may effectively evaluate the atomization efficiency and provide quantitative evaluation indicators for the detection of working performance of the wind-driven atomizer, and has the advantages of convenient operation, accurate detection, precise measurement results, and high reliability of evaluation indicators.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: September 19, 2023
    Assignee: BEIJING RESEARCH CENTER OF INTELLIGENT EQUIPMENT FOR AGRICULTURE
    Inventors: Ruirui Zhang, Liping Chen, Longlong Li, Gang Xu, Yao Wen, Tongchuan Yi
  • Patent number: 11754455
    Abstract: A pressure measuring device includes a ceramic pressure sensor and a process connection, the pressure sensor including a measuring membrane. The pressure measuring device further includes a carrier made of titanium and having a free-standing tubular carrier region running parallel to the surface normal onto the measuring membrane and having an end region adjacent the process connection connected to the process connection and an end region opposite the process connection to which the pressure sensor is fastened by a jointing that connects an outer edge of a front face of the pressure sensor to the end region of the carrier opposite the process connection and carries the pressure sensor.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: September 12, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Nils Ponath, Andreas Rossberg, Elke Schmidt
  • Patent number: 11745288
    Abstract: A pressure measuring device includes a ceramic pressure sensor including a ceramic measuring membrane and a sensor mounting configured to secure the pressure sensor such that a membrane region of the measuring membrane surrounded by a membrane edge is contactable with a medium having a pressure to be measured. The sensor mounting includes a titanium or titanium alloy mounting element including an opening through which the membrane region is contactable with the medium. The membrane edge is connected directly with the mounting element by a diffusion weld produced by a diffusion welding method.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: September 5, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Andreas Rossberg, Anh Tuan Tham, Elke Schmidt, Nils Ponath, Jonas Conradt, Yanli Wang, Thomas Uehlin