Patents Examined by Jerry M Blevins
  • Patent number: 11977256
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor package comprising optically coupled integrated circuit (IC) chips. A first IC chip and a second IC chip overlie a substrate at a center of the substrate. A photonic chip overlies the first and second IC chips and is electrically coupled to the second IC chip. A laser device chip overlies the substrate, adjacent to the photonic chip and the second IC chip, at a periphery of the substrate. The photonic chip is configured to modulate a laser beam from the laser device chip in accordance with an electrical signal from the second IC chip and to provide the modulated laser beam to the first IC chip. This facilitates optical communication between the first IC chip to the second IC chip. Various embodiments of the present disclosure are further directed towards simultaneously aligning and bonding constituents of the semiconductor package.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Tsung Shih, Hau-Yan Lu, Wei-Kang Liu, Yingkit Felix Tsui
  • Patent number: 11971586
    Abstract: Disclosed herein are devices and methods for cleaning, verifying cleaning, and coating a ferrule end face in a single housing thereby preventing contamination of the ferrule end face and associated optical fiber end face. Also disclosed herein is a fiber optic assembly including a ferrule; an optical fiber extending through the ferrule to an end face of the ferrule; and a coating on the end face of the ferrule protecting the optical fiber. The coating is prepared by curing a vinyl-terminated polydimethylsiloxane with a crosslinker in the presence of a catalyst.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: April 30, 2024
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Dennis Marvin Braun, Yu Lu
  • Patent number: 11971593
    Abstract: The present disclosure provides an optical fibre ribbon. The optical fibre ribbon includes a plurality of optical fibres. The plurality of optical fibres is in range of about 4 to 12. In addition, each of the plurality of optical fibres is characterized by diameter. Further, the optical fibre ribbon has a pitch dpitch. Furthermore, the optical fibre ribbon is compatible with standard 250 micron optical fibre for fusion splicing. Also, the optical fibre ribbon is characterized by planarity. Also, the optical fibre ribbon is characterized by a cured coating. Also, the cured coating has characteristic of a glass transition temperature. Also, the glass transition temperature facilitates change in state of the optical fibre ribbon from hard brittle state to soft rubbery state.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: April 30, 2024
    Assignee: Sterlite Technologies Limited
    Inventors: Sravan Kumar, Venkatesh Murthy, Kishore Sahoo
  • Patent number: 11971592
    Abstract: The present disclosure provides a method for stacking a plurality of optical fibre ribbons in an optical fibre cable. The method includes a step of arranging a plurality of optical fibre ribbon stacks in a hexagonal arrangement in the optical fibre cable. The method may further include stacking the plurality of optical fibre ribbons to form an optical fibre ribbon stack such that the optical fibre ribbon stack may have a parallelogram shape. Each optical fibre ribbon is placed at an offset from adjacent optical fibre ribbon. The optical fibre ribbon stack may have a stack height. In addition, each optical fibre ribbon of the plurality of optical fibre ribbons may have a ribbon height. The hexagonal arrangement may have the packaging density greater than 80%.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: April 30, 2024
    Inventors: Badri Gomatam, Manish Sinha
  • Patent number: 11966087
    Abstract: A ferrule structure includes a ferrule including a plurality of unit holes, and a plurality of lens units, wherein each lens unit includes a lens part attached to an end part of an optical fiber, and each lens unit is molded from a resin for transmittance an optical signal, and each lens unit is to be inserted in one of the unit holes.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: April 23, 2024
    Assignee: Fujikura Ltd.
    Inventors: Hirotaka Asada, Akihiro Nakama, Akito Nishimura, Takahiko Sabano
  • Patent number: 11953723
    Abstract: A thermally tunable waveguide including an optical waveguide and a heater is provided. The optical waveguide includes a phase shifter. The heater is disposed over the optical waveguide. The heater includes a heating portion, pad portions and tapered portions. The heating portion overlaps with the phase shifter of the optical waveguide. The pad portions are disposed aside of the heating portion. Each of the pad portions is connected to the heating portion through one of the tapered portions respectively.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Wen-Shiang Liao
  • Patent number: 11953725
    Abstract: A device includes a dielectric layer, a plurality of grating structures, and a dielectric material between the plurality of grating structures and on top of the plurality of grating structures. The grating structures are arranged on the dielectric layer and separated from each other, the plurality of grating structures each having a bottom portion and top portion, the top portion having a first width and the bottom portion having a second width, the second width being larger than the first width.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Chewn-Pu Jou, Hsing-Kuo Hsia
  • Patent number: 11953742
    Abstract: This optical device includes at least one magnetic element including a first ferromagnetic layer, a second ferromagnetic layer, and a spacer layer sandwiched between the first ferromagnetic layer and the second ferromagnetic layer, a laser diode, and a waveguide, in which the waveguide includes at least one input waveguide optically connected to the laser diode and an output waveguide connected to the input waveguide, and at least some of light propagating in at least one of the input waveguide and the output waveguide is applied to the magnetic element.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: April 9, 2024
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Hideaki Fukuzawa, Tomohito Mizuno, Masahiro Shinkai
  • Patent number: 11953749
    Abstract: The present disclosure provides an intermittently bonded optical fibre ribbon. The intermittently bonded optical fibre ribbon includes a plurality of optical fibres such that adjacent optical fibre of the plurality of optical fibres is bonded intermittently along the length by a plurality of bonds. The plurality of bonds is defined by a plurality of colours. The plurality of bonds may form a predefined pattern. The predefined pattern may be used for identification of the intermittently bonded optical fibre ribbon.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: April 9, 2024
    Assignee: Sterlite Technologies Limited
    Inventors: Hemanth Kondapalli, Atulkumar Mishra, Akhil Garg
  • Patent number: 11953744
    Abstract: An optical fiber ribbon comprises a plurality of optical fibers arranged in parallel and a connecting resin layer containing a ribbon resin for coating and connecting the plurality of optical fibers, wherein each of the plurality of optical fibers has an outer diameter of 220 ?m or less; and the ribbon resin contains a cured product of urethane (meth)acrylate, and an amount of silicon is 5 ppm or more and 80000 ppm or less and an amount of tin is 5 ppm or more and 30000 ppm or less at the surface of the connecting resin layer.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: April 9, 2024
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Noriaki Iwaguchi, Takashi Fujii, Fumiaki Sato
  • Patent number: 11953728
    Abstract: A method of transfer printing. The method comprising: providing a precursor photonic device, comprising a substrate and a bonding region, wherein the precursor photonic device includes one or more alignment marks located in or adjacent to the bonding region; providing a transfer die, said transfer die including one or more alignment marks; aligning the one or more alignment marks of the precursor photonic device with the one or more alignment marks of the transfer die; and bonding at least a part of the transfer die to the bonding region.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: April 9, 2024
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Mohamad Dernaika, Ludovic Caro, Hua Yang, Aaron John Zilkie
  • Patent number: 11947170
    Abstract: A connector system includes: a first ferrule configured to hold end parts of multi-core fibers; a second ferrule configured to hold end parts of single-core fibers; and an optical connection member. The optical connection member is arranged between the first and the second ferrule, and includes an optical system configured to optically connect respective cores included in the multi-core fibers and the single-core fibers. A guide pin is formed on one of the first and the second ferrule, and a guide hole is formed in another of the first and the second ferrule. A through hole is formed in the optical connection member, and the first ferrule, the optical connection member, and the second ferrule can be aligned by fitting the guide pin in the guide hole through the through hole.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: April 2, 2024
    Assignee: Fujikura Ltd.
    Inventors: Hirotaka Asada, Kansei Shindo, Kunihiko Fujiwara
  • Patent number: 11927823
    Abstract: An optical cable assembly comprising: (a) a plurality of fibers; (b) a connector; (c) at least a first flat ribbonized portion comprising at least a first portion of the plurality of fibers, the first flat ribbonized portion being terminated to the connector; and (d) at least a first non-flat portion comprising at least a second portion of the plurality of fibers.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: March 12, 2024
    Assignee: TE Connectivity Solutions GmbH
    Inventors: Dwight David Zitsch, Robert Nelson Fair, Jr.
  • Patent number: 11927799
    Abstract: A data transmission system is disclosed. The data transmission system includes at least one signal processing device, at least one conversion device, at least one antenna device, and at least one flexible printed circuit board. The at least one signal processing device is configured to generate or receive at least one data. The at least one conversion device is configured to transform between the at least one data and an optical signal. The at least one antenna device is configured to obtain the at least one data according to the optical signal, and configured to receive or transmit the at least one data wirelessly. The at least one flexible printed circuit board includes at least one conductive layer and at least one optical waveguide layer. The at least one optical waveguide layer is configured to transmit the optical signal.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: March 12, 2024
    Inventors: Po-Kuan Shen, Chun-Chiang Yen, Chiu-Lin Yu, Kai-Lun Han, Jenq-Yang Chang, Mao-Jen Wu, Chao-Chieh Hsu
  • Patent number: 11921397
    Abstract: Provided is an optical switch element capable of adjusting an output strength of light output from an optical switch to a fixed level.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: March 5, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yusuke Muranaka, Toshikazu Hashimoto, Tatsushi Nakahara
  • Patent number: 11921341
    Abstract: An optical cable includes: twisted optical fiber units each including a fiber group formed by optical fibers. At least one of the optical fiber units includes a filling that wraps an outer circumference of the fiber group.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: March 5, 2024
    Assignees: Fujikura Ltd., NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Masatoshi Ohno, Akira Namazue, Ken Osato, Yusuke Yamada, Yuta Maruo, Akira Sakurai, Shigekatsu Tetsutani, Hiroaki Tanioka
  • Patent number: 11921398
    Abstract: To autonomously apply a bias voltage to an optical modulator according to phase angle information provided from outside in a pluggable optical module. A pluggable electric connector (11) can communicate a communication data signal and a control signal with an optical communication apparatus (92). An optical signal output unit (13) includes a Mach-Zehnder type optical modulator including a phase modulation area and outputs an optical modulation signal (LS) modulated according to the communication data signal. An optical power control unit (14) can control optical power of the optical modulation signal (LS). A pluggable optical receptor (15) can output the optical modulation signal (LS) to an optical fiber (91). A control unit (12) controls a modulation operation of the optical signal output unit (13) and the bias voltage applied to the phase modulation area. The control unit (12) determines the bias voltage applied to the phase modulation area according to phase angle information of the control signal (CON1).
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: March 5, 2024
    Assignee: NEC CORPORATION
    Inventor: Katsuhiro Yutani
  • Patent number: 11914205
    Abstract: The present invention satisfies at least one of the condition of the degree of freedom of a primary layer 11 shown in the equation (I) and the condition of the rigidity of a secondary layer 12 shown in the equation (II). Thus, a coated optical fiber 1 capable of suppressing transmission loss in a low temperature environment is provided, in which, even when an optical fiber 10 having a large effective core cross-sectional area Aeff of the optical fiber 10 at a wavelength of 1550 nm and having high microbend sensitivity is used, transmission loss in a low temperature environment can be suppressed. [Math.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: February 27, 2024
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Minoru Kasahara, Yoshihiro Arashitani, Kouji Mochiduki, Masahiro Yabe
  • Patent number: 11914212
    Abstract: Embodiments of the disclosure relate to an optical fiber ribbon. The optical fiber ribbon includes a plurality of optical fibers arranged adjacently to each other and a plurality of bonding regions intermittently spaced along a length of the optical fiber ribbon. At each bonding region, at least one bond is formed between two optical fibers of the plurality of optical fibers. Further, the at least one bond comprises a first material applied to outer surfaces of the two optical fibers and a second material applied over the first material. The first material is different from the second material, and at least one of the first material or the second material includes a colorant configured to identify the optical fiber ribbon. Also disclosed are embodiments of making such an optical fiber ribbon as well as of optical fiber cables including such an optical fiber ribbon.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: February 27, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Julie Ann Chalk, David Wesley Chiasson, Gregory Alan Mills, Bin Yang, Xiaomin Zhao
  • Patent number: 11914210
    Abstract: A fiber optic furcation assembly includes a main fiber optic cable structure, a plurality of furcation tubes, and a housing with a cavity including a transition portion. A plurality of optical fibers each continuously and uninterruptedly extends through an end portion of a jacket of the main fiber optic cable structure, the transition portion of the cavity of the housing, and a respective one of the plurality of furcation tubes. In one embodiment, the cavity includes a securing portion including a plurality of protrusions. The plurality of protrusions defines a plurality of locating channels and at least one securing channel that intersects the locating channels. Bonding material is positioned within the securing channel and bonds the plurality of furcation tubes to the plurality of protrusions. In another embodiment, a cable mount includes a housing attachment, a cable jacket attachment, and a passage. The housing attachment is mounted within a port of the housing.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: February 27, 2024
    Assignee: CommScope Technologies LLC
    Inventors: Theo Van Der Meulen, Geert Antoon Parton, Dirk Alexander De Gast, Heidi Bleus, Robert Lantinga