Patents Examined by Jessee R. Roe
  • Patent number: 11898228
    Abstract: A nickel-cobalt based superalloy composition consisting of by weight (wt.): 33.5 to 54 percent Ni; 19.5 to 36 percent Co; 9 to 12 percent Cr; 3.9 to 5.5 percent Al; 4.5 to 9.5 percent W; up to 5.5 percent Fe; 2 to 3.5 percent Mo; 0.6 to 5 percent Ta; 0.15 to 2.2 percent Ti; up to 1.75 percent Nb; up to 0.1 percent Hf; 0.005 to 0.03 percent C; 0.001 to 0.02 percent B; 0.005 to 0.06 percent Zr; up to 0.3 percent Si; up to 0.6 percent Mn; and the balance being impurities.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: February 13, 2024
    Assignee: ROLLS-ROYCE PLC
    Inventors: Mark C Hardy, David Dye, Lucy Reynolds, Thomas McAuliffe, Ioannis Bantounas
  • Patent number: 11899277
    Abstract: A flexure including a bipod strut pair extending from a base and a titanium-zirconium-niobium alloy, which includes titanium, about 13.5 to about 14.5 wt. % zirconium, and about 18 to about 19 weight % (wt. %) niobium. The titanium-zirconium-niobium alloy has a congruent melting temperature of about 1750 to about 1800° Celsius (° C.).
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: February 13, 2024
    Assignee: RAYTHEON COMPANY
    Inventors: Sunder S. Rajan, Nicholas J. LoVullo, Keith Carrigan, Mary K. Herndon
  • Patent number: 11890673
    Abstract: A dross extraction system for a printer is disclosed, which includes an ejector defining an inner cavity associated therewith, the inner cavity retaining a liquid printing material. The dross extraction system also includes a first inlet coupled to the inner cavity of the ejector, a probe external to the ejector, which is selectably positionable to contact the liquid printing material to attract dross thereto, thereby extracting dross from the liquid printing material when the probe is withdrawn from the liquid printing material. A method of extracting dross from a metal jetting printer is also disclosed, which includes pausing an operation of the metal jetting printer, advancing a probe into a melt pool within a nozzle pump reservoir in the metal jetting printer, extracting dross from the metal printing material and onto the probe, retracting the probe from the nozzle pump reservoir, and resuming the operation of the metal jetting printer.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: February 6, 2024
    Assignee: ADDITIVE TECHNOLOGIES, LLC
    Inventors: Linn C. Hoover, Joseph C. Sheflin, Jason M. LeFevre, Seemit Praharaj, David Alan Vankouwenberg, Chu-Heng Liu, Douglas K. Herrmann
  • Patent number: 11883880
    Abstract: The present invention provides an alloy, an alloy powder, an alloy member, and a composite member which are excellent in corrosion resistance and wear resistance, have crack resistance, and are suitable for an additive manufacturing method and the like. An alloy and an alloy powder include, by mass %, Cr: 18 to 22%, Mo: 18 to 28%, Ta: 1.5 to 57%, C: 1.0 to 2.5%, Nb: 0 to 42%, Ti: 0 to 15%, V: 0 to 27%, Zr: 0 to 29%, and a remainder consisting of Ni and unavoidable impurities, where a molar ratio of (Ta+0.7Nb+Ti+0.6V+Zr)/C=0.5 to 1.5 is satisfied. An alloy member is an additively manufactured product or a cast having such a solidification structure, and the solidification structure is a dendrite-like crystal structure having a metal phase having a face-centered cubic structure and carbides.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: January 30, 2024
    Assignee: PROTERIAL, LTD.
    Inventors: Hiroshi Shiratori, Kazuya Shinagawa, Kousuke Kuwabara, Shuho Koseki
  • Patent number: 11885027
    Abstract: A method for treating a workpiece made of self-passivating metal and having a Beilby layer including applying a coating to a surface of the workpiece, the coating including a reagent, treating the coating to thermally alter the reagent, wherein the thermal altering of the reagent activates and/or hardens the surface.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: January 30, 2024
    Assignee: SWAGELOK COMPANY
    Inventors: Christina Semkow, Cyprian Adair William Illing, Peter C. Williams, Wayne Ostrosky
  • Patent number: 11873543
    Abstract: A nickel-based superalloy includes, in weight percent, 5.9 to 6.5% aluminum, 9.5 to 10.5% cobalt, 4 to 5% chromium, 0.1 to 0.2% hafnium, 0.3 to 0.7% molybdenum, 3.7 to 4.5% rhenium, 7.5 to 8.5% tantalum, 0.2 to 0.7% titanium, 3.2 to 4% tungsten, 0 to 0.1% silicon, the balance being nickel and unavoidable impurities.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: January 16, 2024
    Assignee: SAFRAN
    Inventors: Jérémy Rame, Edern Menou
  • Patent number: 11873542
    Abstract: A high-Ni alloy having excellent weld-hot-cracking resistance includes, in mass %, Cr: 16-30%, Ni: 18-50%, Al: 0.01-1.0%, and Ti: 0.01-1.5%. In a first aspect of the invention, a relationship between number density of TiC precipitates having 1.0 ?m or more of equivalent circle diameter and Mg content in steel satisfies formula (1) below. In a second aspect of the invention, S average concentration in oxide- and sulfide-inclusions is 0.70 mass % or more. In a third aspect of the invention, mass ratios of CaO, MgO, and Al2O3 in inclusions, where O or S is detected, satisfy formula (2), the mass ratios being respectively calculated from average concentrations of Ca, Mg and Al in the inclusions, (1) number density of TiC (number of pieces/mm2)?463?9.5×Mg concentration in steel (mass ppm) and (2) [CaO?0.6×MgO] (mass %)/[CaO+MgO+Al2O3] (mass %)?0.20.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: January 16, 2024
    Assignees: NIPPON STEEL STAINLESS STEEL CORPORATION, NIPPON STEEL CORPORATION
    Inventors: Yukihiro Nishida, Shinji Tsuge, Takahiro Osuki
  • Patent number: 11873873
    Abstract: Systems and methods of making an enhanced brake rotor having enhanced wear resistance are provided. The systems and methods provide a vehicular rotor comprising a base comprising iron (Fe). The base comprises an outer surface having a laser-hardened portion thereon. The laser-hardened portion comprises martensite and having a thickness of between 10 and 100 microns of the outer surface to define the enhanced brake rotor with enhanced wear resistance.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: January 16, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Benjamin Everest Slattery, Kevin P. Callaghan, Mark T. Riefe
  • Patent number: 11873563
    Abstract: Inventive techniques for forming unique compositions of matter are disclosed, as well as various advantageous physical characteristics, and associated properties of the resultant materials. In particular, metal(s) (including various alloys, such as Inconel superalloys) are characterized by having carbon disposed within the metal lattice structure thereof. The carbon is primarily, or entirely, present at interstitial sites of the metal lattice, and may be present in amounts ranging from about 15 wt % to about 90 wt %. The carbon, moreover, forms non-polar covalent bonds with both metal atoms of the lattice and other carbon atoms present in the lattice. This facilitates substantially homogeneous dispersal of the carbon throughout the resultant material, conveying unique and advantageous properties such as strength-to-weight ratio, density, mechanical toughness, sheer strength, flex strength, hardness, anti-corrosiveness, electrical and/or thermal conductivity, etc. as described herein.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: January 16, 2024
    Assignee: LYTEN, INC.
    Inventors: Michael Stowell, Lauren Sienko, Daniel Jacobson
  • Patent number: 11866807
    Abstract: An aluminum alloy pipe includes a pipe body portion made of an Al—Mg series alloy that includes Mg at a concentration equal to or higher than 0.7 mass % and lower than 2.5 mass % and Ti at a concentration higher than 0 mass % and equal to or lower than 0.15 mass %, with the balance being Al and unavoidable impurities, and a Zn-containing layer being outside the pipe body portion and including Zn being diffused in the Al—Mg series alloy at a concentration equal to or higher than 0.1 mass %.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: January 9, 2024
    Assignee: UACJ Corporation; UACJ EXTRUSION CORPORATION
    Inventors: Taichi Suzuki, Kiyotake Sawa, Shuhei Shakudo
  • Patent number: 11859268
    Abstract: A dissolvable alloy, the chemical composition of which comprises aluminum between 2.5% and 9%; zinc between 0.1% and 1.5%; iron between 0.01% and 3%; and magnesium the remainder, such alloy being usable in tools and components of the petroleum industry.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: January 2, 2024
    Assignee: YPF TECNOLOGIA S.A.
    Inventors: Luis Alberto Aguirre, Reynaldo Martin Romero, Walter Morris
  • Patent number: 11859266
    Abstract: A product includes a material having: nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material. A method includes forming a material comprising an alloy of nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: January 2, 2024
    Assignees: Lawrence Livermore National Security, LLC, Eck Industries, Inc., Iowa State University Research Foundation, Inc., University of Tennessee Research Foundation, UT-Battelle, LLC
    Inventors: Scott K. McCall, Alexander Baker, Hunter B. Henderson, Tian Li, Aurelien Perron, Zachary Cole Sims, David Weiss, Ryan T. Ott, Orlando Rios, Max Neveau
  • Patent number: 11859292
    Abstract: A method for surface modification of a titanium substrate or a titanium alloy substrate comprising: a) applying at least one beta phase stabiliser to a surface of the titanium substrate or titanium alloy substrate; and b) heating the surface so as to alloy titanium with the at least one beta phase stabiliser.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: January 2, 2024
    Assignee: Callidus Welding Solutions Pty Ltd
    Inventors: Daniel Fabijanic, Gary Lantzke, Joseph Ellis
  • Patent number: 11859267
    Abstract: A nickel-based alloy composition consisting, in weight percent, of: between 4.0% and 6.9% aluminium, between 0.0% and 23.4% cobalt, between 9.1% and 11.9% chromium, between 0.1% and 4.0% molybdenum, between 0.6% and 3.7% niobium, between 0.0 and 1.0% tantalum, between 0.0% and 3.0% titanium, between 0.0% and 10.9% tungsten, between 0.02 wt. % and 0.35 wt. % carbon, between 0.001 and 0.2 wt. % boron, between 0.001 wt. % and 0.5 wt. %. zirconium, between 0.0 and 0.5% silicon, between 0.0 and 0.1% yttrium, between 0.0 and 0.1% lanthanum, between 0.0 and 0.1% cerium, between 0.0 and 0.003% sulphur, between 0.0 and 0.25% manganese, between 0.0 and 0.5% copper, between 0.0 and 0.5% hafnium, between 0.0 and 0.5% vanadium, between 0.0 and 10.0% iron, the balance being nickel and incidental impurities.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 2, 2024
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Roger Reed, David Crudden
  • Patent number: 11859907
    Abstract: A vessel for containing direct reduced iron (DRI), such as a reactor for the production of DRI, a bin or a hopper or other container for storing or feeding DRI to melting furnaces or briquetting machines, includes at least an upper zone, defined by a first lateral wall having a substantially cylindrical tubular shape, and a discharge zone, positioned below the upper zone and defined by a second lateral wall having a substantially truncated cone shape converging toward a lower discharge aperture. The second lateral wall has an internal surface at least partly lined by an internal lining.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: January 2, 2024
    Assignees: DANIELI & C. OFFICINE MECCANICHE SPA, HYL TECHNOLOGIES, S.A. DE C.V.
    Inventors: Angelico Della Negra, Federico Freschi, Massimiliano Zampa, Maria Teresa Guerra Reyes
  • Patent number: 11851735
    Abstract: A type of high-strength and ductile multicomponent precision resistance alloys and fabrication methods thereof are provided. The alloys are composed of the following components by atomic percentage: Ni 45-60%, Cr 15-30%, Fe 5-20%, Al 5-15%, Mn 3-5%, Cu 0.2-3%, Si 1-5%. Particularly, the sum of the atomic percentages of Mn, Cu and Si is ?13% and ?4.2%, the sum of the atomic percentages of Ni, Cr, Fe and Al is ?70% and ?95.8%, and the sum of the atomic percentages of all the components is 100%. The multicomponent alloys prepared by the methods exhibit face-cantered cubic matrix and possess high strength and good ductility; further, they have high resistivity and excellent resistivity stability in wide temperature ranges below 773 K.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: December 26, 2023
    Assignee: Central South University
    Inventors: Zhiming Li, Shuya Zhu, Dingshun Yan, Kefu Gan, Yong Zhang
  • Patent number: 11852415
    Abstract: A system of obtaining an aluminium melt including SiC particles for use when moulding vehicle parts, e.g. brake disks, the system comprises a pre-processing tank (2), configured to receive SiC particles and to apply a pre-processing procedure to pre-process the SiC particles; a SiC particle transport member (4) configured to transport the pre-processed SiC particles from the pre-processing tank (2) to a crucible (6) of a melting furnace device (8), and the melting furnace device (8) is configured to receive and melt solid aluminium, e.g. aluminium slabs, and to hold an aluminium melt (10) and to receive said pre-processed SiC particles (12).
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: December 26, 2023
    Assignee: Automotive Components Floby AB
    Inventors: Magnus Götlind, Stefan Kristiansson, Anders Johansson, Patrik Jansson
  • Patent number: 11852412
    Abstract: Described herein are photonic furnaces and methods of using the same to produce metal products from a precursor material.
    Type: Grant
    Filed: March 1, 2023
    Date of Patent: December 26, 2023
    Assignee: LIMELIGHT STEEL INC.
    Inventors: Olivia Faye Dippo, Andrew Zigang Zhao
  • Patent number: 11851734
    Abstract: According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: December 26, 2023
    Assignee: ATI PROPERTIES LLC
    Inventor: John W. Foltz, IV
  • Patent number: 11846006
    Abstract: A heat-resistant alloy contains at least one element selected from a group consisting of Al, Ti, Ni, Cr, and Mo, O, and Y, and a ratio of a content of Y in terms of mass to a content of O in terms of mass is 0.5 or greater and 100 or less.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: December 19, 2023
    Assignees: TOKYO METROPOLITAN PUBLIC UNIVERSITY CORPORATION, NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Koji Kakehi, Shigenari Hayashi, Yen-Ling Kuo