Patents Examined by Joel F Brutus
  • Patent number: 11969258
    Abstract: A surgical system includes at least one light emitter generating light at a first intensity and an array of light sensors including a least one row of light sensors, individual light sensors in the row of light sensors adapted to generate a signal including a non-pulsatile component. The system also includes a controller coupled to the array of light sensors, the controller including an analyzer to determine the magnitudes of the non-pulsatile components at the individual light sensors in the row of light sensors, to determine if the non-pulsatile component transitions from a higher magnitude to a lower magnitude and from a lower magnitude to a higher magnitude, and if so, to determine if the first intensity should be changed to a second intensity.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: April 30, 2024
    Assignee: Briteseed, LLC
    Inventors: Amal Chaturvedi, Hariharan Subramanian, Jonathan Gunn, Mayank Vijayvergia, Shetha Shukair, Paul Le Rolland
  • Patent number: 11969289
    Abstract: Systems and methods of predicting future medical events are based on the processing of medical image. The prediction of premature birth and estimation of gestational age based on ultrasound images are presented as illustrative examples. The new abilities to estimate the probability of future medical events, before they otherwise could be predicted, provides new avenues for the development of preventative treatments.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: April 30, 2024
    Assignee: Ultrasound AI Inc.
    Inventor: Robert S Bunn
  • Patent number: 11972585
    Abstract: Machine learning is used to train a network to estimate a three-dimensional (3D) body surface and body regions of a patient from surface images of the patient. The estimated 3D body surface of the patient is used to determine an isocenter of the patient. The estimated body regions are used to generate heatmaps representing visible body region boundaries and unseen body region boundaries of the patient. The estimation of 3D body surfaces, the determined patient isocenter, and the estimated body region boundaries may assist in planning a medical scan, including automatic patient positioning.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: April 30, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Yao-Jen Chang, Jiangping Wang, Vivek Singh, Ruhan Sa, Ankur Kapoor, Andreas Wimmer
  • Patent number: 11963799
    Abstract: Systems and methods for non-invasive blood pressure measurement are disclosed. In some embodiments, a system comprises a wearable member configured to generate first and second signals, and a blood pressure calculation system. The blood pressure calculation system a pre-processing module configured to filter noise from the signals, and a wave selection module configured to identify subsets of waves of the signals, a feature extraction module configured to generate sets of feature vectors form the subsets of waves, and a blood pressure processing module configured to calculate an arterial blood pressure value based on the sets of feature vectors and an empirical blood pressure calculation model, the empirical blood pressure calculation model configured to receive the sets of feature vectors as input values. The blood pressure calculation system further includes a communication module configured to provide a message including or being based on the arterial blood pressure value.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: April 23, 2024
    Assignee: ITAMAR MEDICAL SPRY 2021, LIMITED PARTNERSHIP
    Inventors: Elad Ferber, Pierre-Jean Cobut, Ramkrishnan Narayanan, Derya Gol Gungor
  • Patent number: 11957507
    Abstract: A method for determining a predicted risk level of a clinical endpoint for a predetermined time period for a patient is provided by the present disclosure. The method includes receiving video frames of a heart, the video frames being associated with the patient, receiving electronic health record data including a number of variables associated with the patient, providing the video frames and the electronic health record data to the trained neural network, receiving a risk score from the trained neural network, and outputting a report based on the risk score to at least one of a display or a memory.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 16, 2024
    Assignee: Geisinger Clinic
    Inventors: Brandon K. Fornwalt, Christopher Haggerty, Alvaro Ulloa-Cerna, Christopher Good
  • Patent number: 11957629
    Abstract: Disclosed are systems and methods for assisting with procedures involving a subject's joint, such as a joint. Robotic devices move and position the subject to manipulate the joint and sensing devices sense the joint gap. The robotic devices are controlled based on the joint gap. Novel techniques are disclosed for joint gap segmentation, approximating an uncertainty in determination of the varying dimension of the joint gap, and real-time motion analysis of the joint gap size. In some examples, a kinematic model of the patient's anatomy is utilized to provide robotically assisted manipulation of the same using the techniques described herein.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: April 16, 2024
    Assignee: Stryker Australia PTY LTD
    Inventors: Mario Llewellyn Strydom, Jonathan Michael Roberts, Ross William Crawford, Anjali Tumkur Jaiprakash
  • Patent number: 11950932
    Abstract: A registration fixture is configured for use with a medical imaging system. The registration fixture comprises a rigid internal structure comprising a plurality of fiducial markers arranged in a predefined pattern. The registration fixture further comprises a housing configured to surround the rigid internal structure. The registration fixture is configured to be mounted on a patient table.
    Type: Grant
    Filed: February 9, 2019
    Date of Patent: April 9, 2024
    Assignee: ST JUDE MEDICAL INTERNATIONAL HOLDING, SA.R.L.
    Inventors: Alon Izmirli, Guy Hevel, Adrian Herscovici, Yuval Vaknin, David Jacobs
  • Patent number: 11950961
    Abstract: A computer vision pipeline is provided for fully automated interpretation of cardiac function, using a combination of machine learning strategies to enable building a scalable analysis pipeline for echocardiogram interpretation. Videos from patients with heart failure can be analyzed and processed as follows: 1) preprocessing of echo studies; 2) convolutional neural networks (CNN) processing for view identification; 3) segmentation of chambers and delineation of cardiac boundaries using CNNs; 4); particle tracking to compute longitudinal strain; and 5) targeted disease detection.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: April 9, 2024
    Assignee: The Regents of the University of California
    Inventors: Rahul C. Deo, Jeffrey Zhang
  • Patent number: 11950967
    Abstract: A system for planning and performing a repeat interventional procedure is provided which includes a registration device and an image generation device which map current targets in a reference image for a first interventional procedure to at least one guidance image acquired from a different imaging modality. Biopsy locations are recorded to the guidance images during the first interventional procedure and the biopsy locations are mapped to the reference image to provide a planning image for use in a subsequent interventional procedure on the patient. In a subsequent interventional procedure, the prior planning image (124) may be registered to a current reference image and the prior biopsy locations and prior and current targets are mapped to a guidance image acquired from a different imaging modality. Biopsy locations are then mapped to the guidance image and mapped back to the current reference image.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: April 9, 2024
    Assignees: KONINKLIJKE PHILIPS N.V., THE UNITED STATES of AMERICA, as Represented by the Secreatary, Dept. of Health and Human Services
    Inventors: Jochen Kruecker, Pingkun Yan, Amir Mohammad Tahmasebi Maraghoosh, Peter A Pinto, Bradford Johns Wood
  • Patent number: 11951283
    Abstract: A hand-control device for controlling the operation of an injection system is described herein. The hand-control device includes one or more input components that receive input to control various operations of the injection system, including commanding the injection to perform a particular operation, changing an operational aspect of the injection system, and selecting an operational mode for the injection system. A communication unit of the hand-control device generates and conveys a signal for the injection system, and receives a command signal from the injection system. An output component outputs an indication, such as a light emission, a sound, or haptic feedback, in response to receiving the command signal. In some instances, this indication acts as a confirmation or failure of the intended input.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: April 9, 2024
    Inventors: Caleb D. Tkach, Spencer Fodness-Bondhus, Blaise D. Porter
  • Patent number: 11944761
    Abstract: A medical device position guidance system includes a plurality of noninvasive external detector devices communicable with an invasive medical device. A magnetic field is used to gather information about the anatomical size and shape of a subject, such as a human. The medical device position guidance system further uses the magnetic field to obtain information about the positioning of the invasive medical device relative to the subject's anatomy. A method of using the medical device position guidance system is also provided.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: April 2, 2024
    Assignee: Avent, Inc.
    Inventors: Donald McMichael, Shawn G. Purnell
  • Patent number: 11944419
    Abstract: A method for monitoring thoracic tissue. The method comprises intercepting reflections of electromagnetic (EM) radiation reflected from thoracic tissue of a patient in radiation sessions during a period of at least 24 hours, detecting a change of a dielectric coefficient of the thoracic tissue by analyzing respective the reflections, and outputting a notification indicating the change. The reflections are changed as an outcome of thoracic movements which occur during the period.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: April 2, 2024
    Assignee: Sensible Medical Innovations Ltd.
    Inventors: Dan Rappaport, Nadav Mizrahi, Shlomi Bergida, Amir Saroka, Amir Ronen, Ilan Kochba
  • Patent number: 11944778
    Abstract: One or more devices, systems, methods, and storage mediums for optical imaging medical devices, such as, but not limited to, Optical Coherence Tomography (OCT), single mode OCT, and/or multi-modal OCT apparatuses and systems, and methods and storage mediums for use with same, for triggering auto-pullback, including for devices or systems using blood clearing, are provided herein. Examples of applications include imaging, evaluating and diagnosing biological objects, such as, but not limited to, for Gastro-intestinal, cardio and/or ophthalmic applications, and being obtained via one or more optical instruments, such as, but not limited to, optical probes, catheters, capsules and needles (e.g., a biopsy needle). Techniques provided herein also improve processing and imaging efficiency while achieving images that are more precise.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: April 2, 2024
    Assignee: Canon U.S.A., Inc.
    Inventor: Badr Elmaanaoui
  • Patent number: 11944394
    Abstract: A method of applying a topical numbing agent to a nasal cavity without sedating a patient may include inserting a catheter into a nostril of the patient, the catheter having a first bend that forms a first angle such that at least a portion of the catheter is non-linear. The method may also include guiding a distal end of the catheter into the nasal cavity using a computerized tomography (CT) system by aligning a distal end of the catheter with a first cavity portion of the nasal cavity using a projection of the catheter within the nasal cavity on a CT scan of the patient, and moving the catheter within the nasal cavity while dynamically displaying the projection of the catheter by the CT system relative to the nasal cavity. The method may further include dispensing the topical numbing agent through the catheter into the first cavity portion.
    Type: Grant
    Filed: June 15, 2023
    Date of Patent: April 2, 2024
    Inventor: James T. Wright
  • Patent number: 11944509
    Abstract: An implantable tissue marker device is provided to be placed in a soft tissue site through a surgical incision. The device can include a bioabsorbable body in the form of a spiral and defining a spheroid shape for the device, the spiral having a longitudinal axis, and turns of the spiral being spaced apart from each other in a direction along the longitudinal axis. A plurality of markers can be disposed on the body, the markers being visualizable by a radiographic imaging device. The turns of the spiral are sufficiently spaced apart to form gaps that allow soft tissue to infiltrate between the turns and to allow flexibility in the device along the longitudinal axis in the manner of a spring.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: April 2, 2024
    Assignee: HOLOGIC, INC.
    Inventors: George D. Hermann, David B. Willis, Michael J. Drews, Gail S. Lebovic, James B. Stubbs
  • Patent number: 11931111
    Abstract: Surgical guidance systems and methods visually mark a structure of interest (SOI) of an organ on intraoperative images captured by a locatable imaging device. A location of the SOI relative to a body structure (e.g., a passageway system) associated with the organ is determined in a preoperative image that is captured by a medical diagnostic imaging (MDI) system. The location of the SOI relative to the body structure in the preoperative image is then mapped onto a reconstructed version of the body structure based on location information provided by localization sensors distributed on the body structure. An intraoperative image taken by the locatable imaging device is aligned with the reconstructed version of the body structure and an image object representing the SOI is overlaid on the intraoperative image at a location that is mapped from the reconstructed version of the body structure.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: March 19, 2024
    Assignee: Covidien LP
    Inventors: Evgeni Kopel, Oren P. Weingarten, Ariel Birenbaum
  • Patent number: 11925421
    Abstract: A surgical needle comprising: (a) a sensor; (b) a distal tip with the sensor being located at the distal tip; (c) a needle advancing mechanism that is adjustable to change an insertion depth; and (d) a control unit in communication with the needle advancing mechanism; wherein the sensor provides a signal to the control unit regarding a thickness of a feature of interest and the control unit controls the insertion depth based upon the signal from the sensor so that the insertion depth into the feature of interest is varied or the control unit prevents the needle advancing mechanism from activating.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: March 12, 2024
    Assignee: Gyrus ACMI, Inc.
    Inventors: Kester J. Batchelor, Nikhil M. Murdeshwar
  • Patent number: 11928859
    Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.
    Type: Grant
    Filed: October 27, 2022
    Date of Patent: March 12, 2024
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Daniel Nouri, Alex Rothberg, Matthew de Jonge, Jimmy Jia, Jonathan M. Rothberg, Michal Sofka, David Elgena, Mark Michalski, Tomer Gafner, Abraham Neben
  • Patent number: 11925331
    Abstract: A system and method for a laryngoscopic device which incorporates the electronic and imaging elements within the device with advanced functional iterations that incorporate mathematical pattern recognition/predictive modeling as well as parallel computing and supercomputing for data analysis as well as and integrating it with the patient's record and compiling images from multiple scopes in a cloud-based system for an AI platform to use in diagnosis and disease monitoring.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: March 12, 2024
    Inventor: Charles T. Gonsowski
  • Patent number: 11918341
    Abstract: A medical apparatus includes a probe configured for insertion into a body of a patient. The probe includes electrodes configured to contact tissue within the body. The apparatus further includes a display screen, a position-tracking system configured to acquire position coordinates of the electrodes, and a processor. The processor is configured to acquire electrophysiological signals from a group of the electrodes in a sequence of time intervals, extract electrophysiological parameters from the signals, and for each time interval, compute a measure of consistency of the parameters extracted from the signals. The processor is further configured to render to the display screen a three-dimensional map of the tissue while superimposing on the map a visual indication of the extracted parameters for which the measure of consistency satisfied a consistency criterion, and automatically discarding from the map the parameters for which the measure of consistency did not satisfy the criterion.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: March 5, 2024
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Vadim Gliner, Alexander Salevich, Yair Palti