Patents Examined by John F Pettitt
  • Patent number: 8726691
    Abstract: The present invention relates to an air separation apparatus and method in which a pumped liquid oxygen stream is heated within a heat exchanger through indirect heat exchange with compressed air to produce an oxygen product. The liquid oxygen stream is pressurized in a range above about 55 bar(a) and no greater than about 150 bar(a) and is a supercritical fluid after having been heated within the heat exchanger. The air is compressed to an air pressure that is a function of the oxygen pressure that will result in a minimum power being expended in the compression of the air. The heat exchanger can be a brazed fin heat exchanger fabricated from aluminum in which the fins located in heat exchange passages have an undulating configuration to increase the flow path length and induce flow separation and thereby increase the heat transfer coefficient within the heat exchanger.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: May 20, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Richard John Jibb, Maulik R. Shelat, Lyda Zambrano
  • Patent number: 8474275
    Abstract: A passive heat sink for cooling an electronic component such as a high-performance processor. The heat sink includes a shell with a surface that is positionable adjacent a heat generating surface of the electronic component. The shell includes a heat exchanger portion with cooling fins extending outward and positioned in a fan-provided airflow. A generator compartment is provided within the shell with a generator vessel for containing an absorbent, and the generator compartment is maintained at a pressure lower than ambient. The generator compartment conducts heat away from the electronic component to the absorbent in the generator vessel. An absorber compartment, at a pressure lower than the generator compartment, is provided within the shell above the generator compartment, and, in use, an absorption refrigeration cycle contained within the shell is activated by heat from the electronic component. A bubble pump moves absorbent from the generator compartment to the absorber compartment.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: July 2, 2013
    Assignee: Oracle International Corporation
    Inventors: Ali Heydari, Kenneth C. Gross
  • Patent number: 8434325
    Abstract: A process for the recovery of heavier hydrocarbons from a liquefied natural gas (LNG) stream and a hydrocarbon gas stream is disclosed. The LNG feed stream is heated to vaporize at least part of it, then expanded and supplied to a fractionation column at a first mid-column feed position. The gas stream is expanded and cooled, then supplied to the column at a second mid-column feed position. A distillation vapor stream is withdrawn from the fractionation column below the mid-column feed positions and directed in heat exchange relation with the LNG feed stream, cooling the distillation vapor stream as it supplies at least part of the heating of the LNG feed stream. The distillation vapor stream is cooled sufficiently to condense at least a part of it, forming a condensed stream. At least a portion of the condensed stream is directed to the fractionation column as its top feed.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: May 7, 2013
    Assignee: Ortloff Engineers, Ltd.
    Inventors: Tony L. Martinez, John D. Wilkinson, Hank M. Hudson, Kyle T. Cuellar
  • Patent number: 7997089
    Abstract: Ice condensed in a portion in a case in which a cryogenic refrigerator is installed, which is cooled by the cryogenic refrigerator, is melted by increasing a temperature of the ice to a melting point of the ice or higher. Then, while the temperature of the melted ice and a pressure thereof are kept to be equal to or higher than a freezing point of water, the pressure is reduced by rough evacuation so as to vaporize water. At a time at which the water is discharged, the pressure is further reduced so as to discharge water vapor. In this manner, regeneration of water is performed in accordance with a state of the water (i.e., a solid state, a liquid state, and a gas state), thereby shortening a regeneration time.
    Type: Grant
    Filed: November 25, 2004
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventor: Ryosuke Tsuyuki
  • Patent number: 7995339
    Abstract: In a method of controlling vent tiles, the vent tiles are initially correlated with at least one rack. A vent tile family (VTF) of the at least one rack is determined, where the VTF includes vent tiles that have at least a predefined level of influence over the at least one rack as determined by the correlation between the vent tiles and the at least one rack. In addition, a vent control family (VCF) from the vent tiles in the VTF is identified, where the VCF includes vent tiles having an associated at least one rack whose inlet condition is outside of a predefined threshold. Moreover, the vent tiles in the VCF are controlled on a weighted basis determined by the correlation between the vent tiles and the at least one rack.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: August 9, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Cullen E. Bash, Chandrakant D. Patel, Ratnesh K. Sharma, Abdlmonem Beitelmal
  • Patent number: 7954339
    Abstract: An apparatus for the cryogenic distillation of air includes an assembled unit that has a first distillation column module within which is provided a cryogenic distillation column; a heat exchange module within which is provided heat exchange means for cooling column feed air to a cryogenic distillation temperature; and at least one further processing unit. The or each distillation column, the heat exchange means, and the or each further processing unit are operationally interconnected, and the assembled unit is suitable for transportation to and erection at the site for a cryogenic air separation plant. Construction of a cryogenic air distillation plant is simplified resulting in a reduction in construction cost and time of construction. In addition, as components of the apparatus are self-contained within modules, the risk of contamination of the internal components is reduced, thus improving control of the quality of the construction.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: June 7, 2011
    Assignee: Air Products & Chemicals, Inc.
    Inventor: Stephen John Gibbon
  • Patent number: 7913496
    Abstract: An apparatus and method are provided for pumping a cryogenic fluid from a storage vessel. The cryogenic fluid is pumped from the storage vessel to a heat exchanger and then to a delivery conduit. A pressure sensor measures fluid pressure in the delivery conduit. An electronic controller is programmed to monitor a signal from the pressure sensor, process the signal to determine from the measured process fluid pressure when cryogenic pump performance is degraded, and to send a signal to an operator of the apparatus indicating when the electronic controller determines that cryogenic pump performance has degraded below a predetermined threshold volumetric efficiency.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: March 29, 2011
    Assignee: Westport Power Inc.
    Inventors: Greg Batenburg, Gage Garner, Gregory Harper, Mike Ure
  • Patent number: 7891196
    Abstract: A quench line and exit plenum configuration for a mobile MRI system housed in a transportable trailer includes an exit plenum with deflector plates that direct the quench flow of cold gases upward and away from surrounding objects. In addition, the plenum also includes dual vents to facilitate optimum gas flow and water drainage. The deflector plates are configured to utilize the Venturi effect to create an auxiliary flow of the ambient air to help deflect the flow of cold gases away from nearby pedestrians, when the magnet is quenching, and to enable service personnel to fill the magnet safely while in the vicinity of the exit plenum.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: February 22, 2011
    Assignee: Siemens Plc
    Inventors: Stephen Paul Trowell, Keith White
  • Patent number: 7870747
    Abstract: In the method of using ambient air to vaporize liquefied gas, the steps include transferring heat from a stream of ambient air to a stream of liquefied gas, thereby cooling the air stream, and vaporizing the liquid; transferring heat from a source into the cooled air stream; and then discharging the heated air stream to atmosphere, sufficient heat being transferred to obviate objectionable fog production resulting from step c).
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: January 18, 2011
    Assignee: Cryoquip, Inc.
    Inventor: Ross M. Brown
  • Patent number: 7866184
    Abstract: A semi-closed loop system for producing liquefied natural gas (LNG) that combines certain advantages of closed-loop systems with certain advantages of open-loop systems to provide a more efficient and effective hybrid system. In the semi-closed loop system, the final methane refrigeration cycle provides significant cooling of the natural gas stream via indirect heat transfer, as opposed to expansion-type cooling. A minor portion of the LNG product from the methane refrigeration cycle is used as make-up refrigerant in the methane refrigeration cycle. A pressurized portion of the refrigerant from the methane refrigeration cycle is employed as fuel gas. Excess refrigerant from the methane refrigeration cycle can be recombined with the processed natural gas stream, rather than flared.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: January 11, 2011
    Assignee: ConocoPhillips Company
    Inventor: Anthony P. Eaton
  • Patent number: 7841190
    Abstract: Methods and devices for the management of cryogenic agents within analytical systems using freeze thaw valving having an expansion chamber that limits the flow of the cryogenic agent. The expansion chamber is fitted with an expansion nozzle through which a cryogen flows and a porous frit that allows the cryogen to be exhausted. The porous frit initially allows a rapid flow of cryogen into the expansion chamber. This rapid flow lowers the temperature of the expansion chamber causing fluid contents within a freeze thaw segment to freeze. As the cryogen expands into the expansion chamber and turns into a solid, the porous frit is occluded causing the rapid flow to be restricted. The restriction of the cryogen flow by the occlusion of the porous frit allows the freeze thaw valve to use significantly less cryogen. Sublimation of the cryogen trapped within the porous frit provides sufficient cooling to maintain the valve in its closed position.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: November 30, 2010
    Assignee: Waters Technologies Corporation
    Inventors: Geoff C. Gerhardt, Theodore Dourdeville
  • Patent number: 7779640
    Abstract: Disclosed are a low vibration cryocooler and a method of reducing vibration in a cryocooler. The cryocooler can be a Stirling class cryocooler includes at least one motor that drives a mass, the motor having a main drive winding and a separate trim winding. A motor controller outputs a main drive signal that is coupled to the main drive winding and a separate vibration reducing signal that is coupled to the trim winding.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: August 24, 2010
    Assignee: Raytheon Company
    Inventors: Kenneth D. Price, Robert C. Hon, Julian A. Shrago, Michael C. Barr, Michael H. Kieffer, Michael J. Ramirez
  • Patent number: 7762090
    Abstract: A plate heat exchanger with a condensed fluid separating function, which includes a reheater having plural laminated wrinkled plates and introduction and discharge holes connected to different compressed air channels therein; a chiller having plural laminated wrinkled plates, working fluid inlet and outlet holes connected to a working fluid channel therein, and compressed air channels formed therein; and a wall-shaped pipe configured for partitioning the reheater and the chiller with providing a flow line to communicate a compressed air with he reheater and the chiller. An adiabatic expansion chamber is formed in a lower portion of the chiller on a flow line for the compressed air cooled in the chiller to move toward the reheater. A condensation chamber is formed in a lower portion of the reheater connected to the adiabatic expansion chamber. A condensation mesh sieve and a drainage hole are formed in the condensation hole.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: July 27, 2010
    Inventor: Byeong-Seung Lee
  • Patent number: 7726135
    Abstract: The invention provides an energy transfer apparatus having an energy transfer chamber (optionally bounded by an energy transfer tube) in which rotating flow is established. Preferably, the apparatus has a cold-fluid-discharge end and a hot-fluid-discharge end. Also provided are methods of using such apparatuses.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: June 1, 2010
    Assignee: Greencentaire, LLC
    Inventor: Shaun E. Sullivan
  • Patent number: 7712331
    Abstract: A system is set forth to increase the capacity of an LNG-based liquefier in a cryogenic air separation unit wherein, in a low production mode, the nitrogen that is fed to the LNG-based liquefier consists only of at least a portion of the high pressure nitrogen from the distillation column system while in a high production mode, a supplemental compressor is used to boost the pressure of at least a portion of the low pressure nitrogen from the distillation column system to create additional (or replacement) feed to the LNG-based liquefier. A key to the present invention is the supplemental compressor and the associated heat exchange equipment is separate and distinct from the LNG-based liquefier. This allows its purchase to be delayed until a capacity increase is actually needed and thus avoid building an oversized liquefier based on a speculative increase in liquid product demand.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 11, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Douglas Paul Dee, Jung Soo Choe, Donn Michael Herron
  • Patent number: RE42467
    Abstract: Improved process for evacuating the thermally insulating jacket of a dewar having an inner wall and an outer wall, with the inner space between said walls completely or partially filled with an insulating material, containing also a moisture sorbing material and a getter material, in which said moisture sorbing material is a chemical drying agent.
    Type: Grant
    Filed: July 5, 1996
    Date of Patent: June 21, 2011
    Assignee: SAES Getters S.p.A.
    Inventors: Claudio Boffito, Antonio Schiabel, Allessandro Gallitognotta