Patents Examined by Joseph Galvin, III
  • Patent number: 10157792
    Abstract: A through substrate via (TSV) and method of forming the same are provided. The method of making the TSV may include etching a via opening into the backside of semiconductor substrate, the via opening exposing a surface of a metal landing structure. A conductive layer is deposited over the backside of semiconductor substrate, sidewalls of the via opening, and exposed surface of the metal landing structure. The conductive layer is coated with a polymer material, filling the via opening. The polymer material is developed to remove the polymer material from the backside of semiconductor substrate, leaving the via opening filled with undeveloped polymer material. A planar backside surface of semiconductor substrate is formed by removing the conductive layer.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: December 18, 2018
    Assignee: NXP USA, INC.
    Inventors: Qing Zhang, Lianjun Liu
  • Patent number: 10157976
    Abstract: A system-on-chip (SOC) device comprises a first capacitor in a first region, a second capacitor in a second region, and may further comprise a third capacitor in a third region, and any additional number of capacitors in additional regions. The capacitors may be of different shapes and sizes. A region may comprise more than one capacitor. Each capacitor in a region has a top electrode, a bottom electrode, and a capacitor insulator. The top electrodes of all the capacitors are formed in a common process, while the bottom electrodes of all the capacitors are formed in a common process. The capacitor insulator may have different number of sub-layers, formed with different materials or different thickness. The capacitors may be formed in an inter-layer dielectric layer or in an inter-metal dielectric layer. The regions may be a mixed signal region, an analog region, a radio frequency region, a dynamic random access memory region, and so forth.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chi Tu, Wen-Chuan Chiang, Chen-Jong Wang
  • Patent number: 10157890
    Abstract: A semiconductor structure includes: a first semiconductor workpiece; a second semiconductor workpiece, bonded to a first surface of the first semiconductor workpiece, wherein the second semiconductor workpiece includes two adjacent semiconductor dies; a dielectric material, disposed between the two adjacent semiconductor dies; a first electrically conductive via, formed in the dielectric material and extended to electrically connect the first semiconductor workpiece; a third semiconductor workpiece, bonded to a second surface of the first semiconductor workpiece, the second surface being opposite to the first surface; and a second electrically conductive via, extended into the first semiconductor workpiece and substantially aligned with the first electrically conductive via such that the first electrically conductive via connects the second electrically conductive via.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen-Hua Yu, Ming-Fa Chen, Sung-Feng Yeh
  • Patent number: 10153236
    Abstract: A semiconductor device is provided, the semiconductor device having: a semiconductor chip; a wiring substrate which supports the semiconductor chip and is electrically connected to the semiconductor chip; a first metal plate which supports the wiring substrate; a second metal plate which is arranged between the wiring substrate and the first metal plate; a first bonding part which bonds the wiring substrate and the second metal plate; and a second bonding part which bonds the first metal plate and the second metal plate, and having a thickness of an outer circumferential part of the second metal plate being larger than a thickness of a center part of the second metal plate.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: December 11, 2018
    Assignee: HITACHI, LTD.
    Inventors: Takaaki Miyazaki, Osamu Ikeda
  • Patent number: 10147658
    Abstract: A semiconductor apparatus includes a plurality of stacked chips. Each of the plurality of stacked chips includes a delay chain. Each of the plurality of stacked chips comprises a plurality of Through-Vias, wherein one of the plurality of Through-Vias formed in a first one of the plurality of stacked chips and electrically coupled to a predetermined location of a first delay chain on the first one of the plurality of stacked chips and one of the plurality of Through-Vias formed in a neighboring one of the plurality of stacked chips and electrically coupled to a predetermined location of a delay chain on the neighboring one of the plurality of stacked chips are configured to electrically couple the first one of the plurality of stacked chips to the neighboring one of the plurality of stacked chips. A signal transmitted from a first one of the plurality of stacked chips generates a feedback signal to the first one of the plurality of stacked chips through one or more of the plurality of Through-Vias.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: December 4, 2018
    Assignee: SK hynix Inc.
    Inventor: Sang Ho Lee
  • Patent number: 10147635
    Abstract: A fin field effect transistor (finFET) and a method of fabricating the finFET. The method includes forming one or more fins above a substrate in a channel region, depositing a first insulating material conformally on the one or more fins and the substrate, and depositing a second insulating material over the first insulating material in non-channel regions adjacent to the channel region. A selective etch of the first insulating material in the channel region is performed to form a trench. The trench is filled with the second insulating material. The second insulating material in the channel region is adjacent to the first insulating material in the non-channel regions.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: December 4, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Peng Xu, Chen Zhang
  • Patent number: 10141410
    Abstract: A semiconductor device according to an embodiment includes an n-type SiC region, an electrode in contact with the SiC region, and a region including oxygen, the region provided in the SiC region, the region being provided on an electrode side of the SiC region.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: November 27, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tatsuo Shimizu
  • Patent number: 10141291
    Abstract: The present disclosure relates to a semiconductor device and method of manufacturing the same. The method for manufacturing a semiconductor device includes: attaching a carrier wafer to a front side of a top die wafer; thinning a back side of the top die wafer, the back side of the top die wafer being opposite to the front side the top die wafer; singulating the carrier wafer and the top die wafer whereby singulated dies attached to singulated carrier dies are formed; and bonding back side of each of the singulated dies to a front side of a bottom die wafer.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: November 27, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tung-Liang Shao, Chih-Hang Tung, Chen-Hua Yu
  • Patent number: 10134948
    Abstract: An improved light emitting heterostructure is provided. The heterostructure includes an active region having a set of barrier layers and a set of quantum wells, each of which is adjoined by a barrier layer. The quantum wells have a delta doped p-type sub-layer located therein, which results in a change of the band structure of the quantum well. The change can reduce the effects of polarization in the quantum wells, which can provide improved light emission from the active region.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: November 20, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Remigijus Gaska
  • Patent number: 10134892
    Abstract: High voltage devices and methods for forming a high voltage device are disclosed. The method includes providing a substrate having top and bottom surfaces. The substrate is defined with a device region and a recessed region disposed within the device region. The recessed region includes a recessed surface disposed lower than the top surface of the substrate. A transistor is formed over the substrate. Forming the transistor includes forming a gate at least over the recessed surface and forming a source region adjacent to a first side of the gate below the recessed surface. Forming the transistor also includes forming a drain region displaced away from a second side of the gate. First and second device wells are formed in the substrate within the device region. The first device well encompasses the drain region and the second device well encompasses the source region.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: November 20, 2018
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventor: Guowei Zhang
  • Patent number: 10115929
    Abstract: The present disclosure relates to a package structure of organic light emitting diode (OLED) components. The package structure includes an OLED body and an encapsulation layer having an organic layer, a protecting layer, a blocking layer, and a stressed layer. A first curved-surface area is formed on the organic layer, and the protecting layer, the blocking layer, and the stressed layer are stacked on the organic layer in sequence. The protecting layer, the blocking layer, and the stressed layer are respectively formed with a second curved-surface area. The second curved-surface area is stacked on the first curved-surface area and is overlapped with the first curved-surface area, and the second curved-surface area and the first curved-surface area form a folded area of the encapsulation layer. The present disclosure also relates to one OLED component and a display panel.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: October 30, 2018
    Assignee: Wuhan China Star Optoelectronics Technology Co., Ltd
    Inventors: Jinchang Huang, Hsianglun Hsu
  • Patent number: 10115719
    Abstract: Integrated circuits having resistor structures formed from a MIM capacitor material and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with a resistor area and a capacitor area. The method includes depositing a capacitor material over the resistor area and the capacitor area of the semiconductor substrate. The method also includes forming a resistor structure from the capacitor material in the resistor area. Further, the method includes forming electrical connections to the resistor structure in the resistor area.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 30, 2018
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Jagar Singh, Sanford Chu
  • Patent number: 10109787
    Abstract: A vertical Hall element and method of fabricating are disclosed. The method includes forming a buried region having a first conductivity type in a substrate having a second conductivity type and implanting a dopant of the first conductivity type into a well region between the top surface of the substrate and the buried region. The buried region has a doping concentration increasing with an increasing depth from a top surface of the substrate and the well region has a doping concentration decreasing from the top surface of the substrate to the buried region. The method includes forming first through fifth contacts on the well region. First and second contacts define a conductive path and second and third contacts define another conductive path through the well region. The fourth contact is formed between first and second contacts and the fifth contact is formed between second and third contacts.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: October 23, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keith Ryan Green, Iouri Mirgorodski
  • Patent number: 10109580
    Abstract: A wiring board includes a single-layer insulating layer, and a single-layer interconnect layer embedded in the insulating layer, wherein an entirety of a first surface of the interconnect layer is exposed in a recessed position relative to a first surface of the insulating layer, and a second surface of the interconnect layer is partially exposed in a recessed position relative to a second surface of the insulating layer.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: October 23, 2018
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Shunichiro Matsumoto, Hitoshi Kondo, Katsuya Fukase
  • Patent number: 10109599
    Abstract: An integrated circuit (IC) structure is disclosed. The structure can include: an insulator positioned over a device layer; a capping layer positioned over the insulator; an inter-layer dielectric (ILD) positioned over the capping layer; a first metal wire positioned over the ILD, and outside an active area of the IC structure; a continuous metal crack stop in contact with, and interposed between, the first metal wire and the device layer, such that the continuous metal crack stop extends through at least the insulator, the capping layer, and the ILD; a second metal wire positioned over the ILD, and within the active area of the IC structure; and two vias vertically coupled to each other and interposed between the second metal wire and the device layer, such that the two vias extend through at least the insulator, the capping layer, and the ILD.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: October 23, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Cathryn J. Christiansen, Anthony K. Stamper, Tom C. Lee, Ian Mccallum-Cook
  • Patent number: 10109546
    Abstract: In order to carry out the encapsulation of electronic components, the invention proposes to cover the electronic components (7) with a heat-polymerisable material corresponding to a composition comprising a diimide constituent and a diamine constituent, in which the diimide constituent has been predissolved in the diamine constituent, and to heat the assembly obtained under conditions suitable for carrying out the curing of the material by an addition polymerization reaction between said diimide constituent and the diamine constituent. The invention finds an application in particular in the field of electronic power modules.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: October 23, 2018
    Assignee: Valeo Equipements Electriques Moteur
    Inventors: Arnaud Soisson, Philippe Banet, Linda Chikh, Odile Fichet
  • Patent number: 10103328
    Abstract: According to one embodiment, a nonvolatile memory device includes a first conductive layer, a second conductive layer, and an intermediate layer. The first conductive layer includes a first element. The first element includes a at least one selected from the group consisting of Ag, Cu, Ni, Co, Ti, Al, and Au. The intermediate layer is provided between the first conductive layer and the second conductive layer. The intermediate layer includes an oxide. The oxide includes a second element and a third element. The second element includes at least one second element being selected from the group consisting of Ti, Ta, Hf, W, Mg, Al, and Zr. The third element is different from the second element and includes at least one selected from the group consisting of Si, Ge, Hf, Al, Ta, W, Zr, Ti, and Mg.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: October 16, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Takayuki Ishikawa, Harumi Seki, Shosuke Fujii, Masumi Saitoh
  • Patent number: 10103096
    Abstract: A semiconductor device (10) of the present invention includes at least one circuit unit (41, 42, 43) which includes: a device main body (20); and a power supply terminal (31, 32, 33), an output terminal (34, 35, 36), and a ground terminal (37, 38, 39) which protrude from the device main body (20). The output terminal (34, 35, 36) protrudes from the device main body (20) in an opposite direction to the ground terminal (37, 38, 39). The power supply terminal (31, 32, 33) protrudes in a same direction as the ground terminal (37, 38, 39) and is positioned so as to be shifted in a direction orthogonal to an arrangement direction of the output terminal (34, 35, 36) and the ground terminal (37, 38, 39).
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: October 16, 2018
    Assignee: SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventor: Yoshihiro Kamiyama
  • Patent number: 10090436
    Abstract: Embodiments of the invention include a substrate (10) and a semiconductor structure (12) grown on the substrate. The semiconductor structure includes a light emitting layer (18) disposed between an n-type region (16) and a p-type region (20). The substrate includes a first sidewall (30) and a second sidewall (32). The first sidewall and second sidewall are disposed at different angles relative to a major surface of the semiconductor structure. A reflective layer (34) is disposed over the first sidewall (30).
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: October 2, 2018
    Assignee: Lumileds LLC
    Inventor: Toni Lopez
  • Patent number: 10083879
    Abstract: A method for fabricating a semiconductor nanowire device includes forming a base including a plurality of PMOS regions, forming a plurality of first openings in the base of the PMOS regions, forming a plurality of first epitaxial wires by filling the first openings with a germanium-containing material, and forming a plurality of second openings in the base by etching a portion of the base under each first epitaxial wire. Each first epitaxial wire is connected to both sidewalls of a corresponding second opening and is hung above a bottom surface of the corresponding second opening. The method also includes performing a thermal oxidation treatment process on the plurality of first epitaxial wires to form an oxide layer on each first epitaxial wire, forming a plurality of first nanowires by removing the oxide layer from each first epitaxial wire, and forming a first wrap-gate structure to surround each first nanowire.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: September 25, 2018
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventor: Deyuan Xiao