Patents Examined by Kaleria Knox
  • Patent number: 11441420
    Abstract: Well completion is accomplished by obtaining a sample of geological material from the subsurface and generating primary data for the sample of geological material. The primary data include textural data, chemical data and mineralogical data. The primary data are used to derive secondary data for the sample of geological material, and the primary data and the secondary data are used to generate tertiary data for the sample of geological material. The tertiary data are a quantification of physical characteristics of the sample of geological material. The primary data, secondary data and tertiary data are used to determine a location of a stage along a well and an arrangement of perforation clusters in the stage.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: September 13, 2022
    Assignee: CGG SERVICES SAS
    Inventors: Graham Spence, Chi Vinh Ly, Guy Oliver
  • Patent number: 11442192
    Abstract: Methods and systems for evaluating a distribution and recoverability of a light non-aqueous phase liquid (LNAPL) or a dense non-aqueous phase liquid (DNAPL) in fractured substrate are provided. Also provided are methods and systems for evaluating a distribution and recoverability of a light non-aqueous phase liquid (LNAPL) or a dense non-aqueous phase liquid (DNAPL) in other substrates, including a layered porous media substrate. Also provided are methods and systems for calibrations related to DNAPL transmissivity.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: September 13, 2022
    Assignee: GEI Consultants, Inc.
    Inventors: John Michael Hawthorne, Lisa Allison Reyenga
  • Patent number: 11442053
    Abstract: A rock sample is subjected to a heating sequence in an inert atmosphere, the effluents resulting from this heating are oxidized, the hydrocarbon-based compounds, the CO, the CO2 and the SO2 released are measured, and a pyrolysis pyritic sulfur content is deduced therefrom. The residue resulting from the heating in an inert atmosphere is then heated in an oxidizing atmosphere and the CO and the CO2 released are measured. The pyritic sulfur content is determined at least from the pyrolysis pyritic sulfur content and from a parameter which is a function of the hydrogen content and of the oxygen content of the organic matter of the sample. It is also possible to determine the organic sulfur content from the pyritic sulfur content and from a measurement of the SO2 during the heating sequence in an oxidizing atmosphere.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 13, 2022
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Anabel Aboussou, Violaine Lamoureux-Var, Daniel Pillot, Isabelle Kowalewski, Bruno Garcia, Thomas Wagner, Christian März
  • Patent number: 11435336
    Abstract: The present invention discloses a method for determining a content of lost gas in a shale gas content test. The method includes: acquiring a shale core and recording the time required for acquiring the shale core; carrying out a desorption experiment on the shale core to obtain desorption data; acquiring a fitting objective function; fitting the desorption data by using the fitting objective function to obtain fitted desorption data; determining fitting parameters according to the desorption data and the fitted desorption data; correcting the time required for acquiring the shale core according to the fitting parameters; and obtaining the content of lost gas according to the fitting parameters and the corrected time required for acquiring the shale core. The present invention can improve the determining precision of the content of the lost gas.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: September 6, 2022
    Assignees: TSINGHUA UNIVERSITY, SHANXI RESEARCH INSTITUTE FOR CLEAN ENERGY, TSINGHUA UNIVERSITY
    Inventors: Ruina Xu, Peixue Jiang, Kecheng Zeng, Fuzhen Zhang
  • Patent number: 11415719
    Abstract: Systems, methods, and computer-readable media for the attenuation of interface waves using polarization filtering applied to recorded single component seismic data are disclosed. A second component for polarization filtering is created by determining interface waves from the recorded data single component seismic data. The second component seismic data may be generated using an interface waves propagation model (in frequency or time-frequency domain) or by differential normal move-out (NMO) interpolation. Polarization filtering may be applied to multicomponent seismic data formed from the recorded single component seismic data and the generated second component seismic data to attenuate interface noise.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: August 16, 2022
    Assignee: Saudi Arabian Oil Company
    Inventor: Mamadou Sanou Diallo
  • Patent number: 11414990
    Abstract: A method of predicting behavior or a degradable device of a borehole tool when deployed downhole including introducing a test mass of material identical to the material of the degradable device to the same general location and at a time near to when the degradable device is deployed, removing the test mass from downhole, determining characteristics related to degradation of the test mass, and predicting degradation behavior of the degradable device based on the determined characteristics.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: August 16, 2022
    Assignee: BAKER HUGHES OILFIELD OPERATIONS LLC
    Inventors: Aaron Edward Young, Ricardo Arturo Barker Gomez
  • Patent number: 11402315
    Abstract: A system can access geological data describing a plurality of rock types in a physical rock sample drilled from a reservoir. The system can generate synthetic rock samples and execute single phase upscaling to compute absolute permeabilities for the physical rock sample and the synthetic rock samples. The system can execute a first multiphase upscaling based on the single phase upscaling to determine relative permeabilities for the physical rock sample and the synthetic rock samples. The system can compare the relative permeability of the physical rock sample to the relative permeabilities for the synthetic rock samples and select a synthetic rock sample that varies the least from the physical rock sample. The system can perform at least one additional multiphase upscaling on the physical rock sample and the synthetic rock samples to determine a second multiphase upscaling result and to develop a plan for drilling operations.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: August 2, 2022
    Assignee: Landmark Graphics Corporation
    Inventors: Travis St. George Ramsay, Aravind Prabhakar
  • Patent number: 11397429
    Abstract: An apparatus that detects a tilt, lean, movement and/or rotation and/or change in tilt, lean, position and/or rotation of a user, rider, and/or payload which may use sensors configured to accomplish this detection, where sensors may be on, embedded in and/or attached to a structural device, strap, and/or surface of a vehicle, structure or system, where an apparatus of the present invention may be on, part of, in, attached to or connected to a vehicle, structure or system where detecting, measuring and/or determining a lean, tilt, movement and/or rotation or change thereof, of a user, rider, and/or payload, may be desirable; position or movement and/or center of mass or change thereof may be calculated, or detected; calculations, measurements, metrics or detections from the present invention may be an output or the only output of an apparatus that is an embodiment of the present invention.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: July 26, 2022
    Inventor: Thomas A. Youmans
  • Patent number: 11391864
    Abstract: Systems and methods for generating permeability scaling function for different features of interest are disclosed. Exemplary implementations may: obtain subsurface data sets; generate permeability scaling functions for individual features of interest; store the permeability scaling functions; and generate upscaled subsurface distributions using the permeability scaling functions.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: July 19, 2022
    Assignee: Chevron U.S.A. Inc.
    Inventors: Mark Skalinski, Rafael Salazar-Tio, Robert Mallan
  • Patent number: 11384906
    Abstract: Method for monitoring a water supply network (1) in an infrastructure object (2) having water pipes (3) and at least one measuring device (4) for monitoring the water supply network (1) that contains at least the following steps: a) determining at least one structure parameter (5) which characterizes at least one structure of the infrastructure object (2) or the water supply network (1); b) determining at least one water parameter (6) using the at least one measuring device (4), and c) determining at least one probability value (7) for water damage, wherein at least one structure parameter (5) and the at least one water parameter (6) are taken into consideration.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: July 12, 2022
    Assignee: GROHE AG
    Inventors: Bert Depiere, Robert Veltrup, Philip Speck
  • Patent number: 11385616
    Abstract: An actuator of a process control device continuously monitors actuator force and records high force values at each position point by continuously executing a routine in a processor of the actuator. The routine includes receiving from a position sensor a current position value indicating a position of a valve element in the valve, and from a force sensor a current force value indicating a force applied by the actuator. The routine also includes retrieving, from a memory device coupled to the processor, a previous force value measured at the current position, and comparing the current force values for the current position with the previous force value for the current position. If the current force value for the current position exceeds the previous force value for the current position, the routine replaces the previous force value for the current position with the current force value for the current position in memory.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: July 12, 2022
    Assignee: EMERSON PROCESS MANAGEMENT VALVE AUTOMATION, INC.
    Inventors: Paul Walker, Mahesh Gade
  • Patent number: 11382527
    Abstract: Electrochemical Impedance Spectroscopy (EIS) is used in conjunction with continuous glucose monitors and continuous glucose monitoring (CGM) to enable in-vivo sensor calibration, gross (sensor) failure analysis, and intelligent sensor diagnostics and fault detection. An equivalent circuit model is defined, and circuit elements are used to characterize sensor behavior.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: July 12, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Fei Yu, Ning Yang
  • Patent number: 11353442
    Abstract: The invention provides a physical simulation experimental device and method for water invasion and drainage gas recovery in gas reservoir, and the experimental device includes: a heterogeneous reservoir model having a first core holder, a second core holder, a third core holder and a fourth core holder, wherein the third core holder is connected between the first core holder and the second core holder, and the fourth core holder is connected between an outlet end of the first core holder and an outlet end of the second core holder; a gas injection mechanism having a gas injection bottle and a gas injection cylinder; a water body simulation mechanism having a water storage tank and a water injection pump. The invention can simulate and reveal different drainage gas recovery modes, timings, scales and their influences on the recovery ratio of the gas reservoir.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: June 7, 2022
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xuan Xu, Xizhe Li, Yong Hu, Yongxin Han, Yunsheng Wei, Yujin Wan, Chunyan Jiao, Zhenhua Guo, Haifa Tang, Weigang Huang, Guangzhen Chu, Yunhe Su
  • Patent number: 11326448
    Abstract: A pressure testing system for analyzing a rock formation includes a tubular support member sized to pass into a wellbore of the rock formation and an adjustable loading device configured to exert a radial load against the wall of the wellbore. The adjustable loading device includes multiple expandable members distributed around a circumference of the tubular support member and configured to expand to respectively exert multiple radial pressures against the wall of the wellbore that together provide the radial load. The pressure testing system further includes a control module configured to selectively control expansion of each expandable member of the multiple expandable members to vary the radial load exerted by the adjustable loading device as a function of an angle around the circumference of the tubular support member.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: May 10, 2022
    Assignee: Saudi Arabian Oil Company
    Inventor: Khalid Mohammed M. Alruwaili
  • Patent number: 11313847
    Abstract: Provided, in one aspect, is a method for performing a rock core flow performance test. The method, in this aspect, includes containing un-cured cement within an in-situ cement curing test fixture. The method additionally includes placing the in-situ cement curing test fixture with the un-cured cement within a pressure vessel of a rock core flow test system, and subjecting the in-situ cement curing test fixture with the un-cured cement within the pressure vessel to non-ambient temperature or pressure to form in-situ cured cement.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: April 26, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Liam Dubs
  • Patent number: 11299981
    Abstract: An instrument package for use during the drilling a wellbore. The instrument package includes a plurality of instruments such as accelerometers, gyroscopes, and magnetometers; a computer is configured to determine the current position of the plurality of instruments from a set of measurements produced by the plurality of instruments; and wherein the plurality of instruments are mechanically isolated from a drill head assembly by one or more multi-degree of freedom vibration isolators. The computer preferably has at least two modes different analytical modes of analyzing the set of measurements produced by the plurality of instruments, including a continuous mode and a survey mode, the continuous mode being operational during times that active drilling is occurring and the survey mode being operational during times that the active drilling is not occurring.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: April 12, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Hung Nguyen, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Raviv Perahia, Shuoqin Wang, David W. Shahan, Lian X. Huang, David T. Chang
  • Patent number: 11268944
    Abstract: The present invention a method for determining the gas saturation of a tight reservoir. The method comprises the steps of: determining the pore size distribution of the tight reservoir rock sample, and calculating the free water saturation; calculating the water-membrane water saturation; calculating the corner water saturation; calculating the gas saturation of the tight reservoir rock sample according to the following equation: Sg=100?Sw wherein Sw is the water saturation in %; Sw is the sum of the free water saturation, the water saturation and the corner water saturation; Sg is the gas saturation in %. The method for determining the gas saturation of a tight reservoir uses model calculations, which avoids errors in the determination results of the gas saturation caused by water volatilization, surface adsorption, and observation of water flow during experiments.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: March 8, 2022
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Hua Tian, Caineng Zou, Shuichang Zhang, Shaobo Liu, Xuesong Lu, Zhichao Yu
  • Patent number: 11262214
    Abstract: The invention relates to a method for monitoring at least two redundant sensors, which are in particular arranged in a chemical plant or an aircraft, comprising providing a first sensor signal of a first sensor, the first sensor signal comprising at least one measured value, providing at least one further sensor signal from a further sensor, the further sensor signal comprising at least one further measured value, generating a first analysis signal from the first sensor signal, generating at least one further analysis signal from the further sensor signal, determining at least one relationship between the first sensor signal and the further sensor signal at least in dependence on the first analysis signal and the further analysis signal over a time horizon, comparing the relationship with at least one admissible range, and, depending on the result of the comparison, determining whether at least one sensor of the two redundant sensors is faulty.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: March 1, 2022
    Assignee: Bayer Aktiengesellschaft
    Inventor: Achim Küpper
  • Patent number: 11242740
    Abstract: A method of logging a wellbore casing and an adjacent formation comprises moving a measurement tool inside a borehole of the casing, wherein the casing is filled with air. Concurrently with moving the measurement tool inside the borehole, the method comprises emitting radioactive energy at an initial energy level from a radiation source of the measurement tool, wherein the radioactive energy is directed toward a wall of the casing and along a travel path from the radiation source to one or more detectors of the measurement tool, measuring energy loss of the radioactive energy at the one or more detectors relative to the initial energy level, and detecting a cement property outside of the casing based on the measured energy loss.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 8, 2022
    Assignee: Keystone Wireline, Inc.
    Inventors: Martin D. Comini, Richard A. Carpenter
  • Patent number: 11243095
    Abstract: To reduce the error in a rotational angle detected by a rotational angle detection apparatus, provided is a rotational angle detection apparatus that detects a rotational angle of a magnetic field generation source, including a magnetic field detection apparatus that detects magnetic field components in at least two directions, and outputs resulting detection data; a correction value calculating section that calculates correction values for correcting an angle error of the rotational angle, based on a steady-state error that does not depend on rotation of the magnetic field generation source; and an angle computing section that calculates the rotational angle of the magnetic field generation source based on the detection data and the correction values, and outputs an angle signal indicating the rotational angle.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 8, 2022
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Takeo Yamamoto, Ryuta Tanaka, Satoshi Fukase, Kenta Sogo