Patents Examined by Kallambella M. Vijayakumar
  • Patent number: 6878304
    Abstract: A highly accurate reduction resistant thermistor exhibiting stable resistance characteristics even under conditions where the inside of a metal case of a temperature sensor becomes a reducing atmosphere, wherein when producing the thermistor comprised of a mixed sintered body (M1 M2)O3.AOx, the mean particle size of the thermistor material containing the metal oxide, obtained by heat treating, mixing, and pulverizing the starting materials, is made smaller than 1.0 ?m and the sintered particle size of the mixed sintered body, obtained by shaping and firing this thermistor material, is made 3 ?m to 20 ?m so as to reduce the grain boundaries where migration of oxygen occurs, suppress migration of oxygen, and improve the reduction resistance.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: April 12, 2005
    Assignees: Nippon Soken Inc., Denso Corporation
    Inventors: Itsuhei Ogata, Daisuke Makino, Kaoru Kuzuoka, Atsushi Kurano
  • Patent number: 6852252
    Abstract: The present invention relates to incorporating metal nanoshells specifically designed to interact with triplet excitons in polymers. By interacting with triplet excitons, the rate of photo-oxidation can be slowed and the density of luminescence-quenching traps can be reduced.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: February 8, 2005
    Assignee: William Marsh Rice University
    Inventors: Nancy J. Halas, Gregory David Hale
  • Patent number: 6773636
    Abstract: There are provided: (1) a process for producing an InSbO4-containing transparent electroconductive film, which comprises the step of sputtering simultaneously: (i) a target (A) for sputtering, which comprises In, Sb and O, and whose atomic ratio of Sb/In is from 0.9 to 1.1, and (ii) a target (B) for sputtering, which comprises Sb, (2) a transparent eletroconductive film, which contains In, Sb and O, and whose atomic ratio of Sb/In is from 0.8 to 1.5, and (3) a target for sputtering, which contains In, Sb and O, and whose atomic ratio of Sb/In is from 1.2 to 2.0.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: August 10, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Takeshi Hattori, Kunio Saegusa, Yuzo Shigesato
  • Patent number: 6749776
    Abstract: A method of making an electron emissive material using combinatorial chemistry techniques is provided. The method includes providing a plurality of pixels of the electron emissive material, each pixel having at least one different characteristic from any other one of the plurality of pixels, and measuring at least one property of each pixel. The measurement may include a measurement of the electron emissive material work function using a Kelvin probe or other work function measurement systems.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: June 15, 2004
    Assignee: General Electric Company
    Inventors: Sung Su Han, Sylvain Simon Coulombe
  • Patent number: 6746626
    Abstract: A method and apparatus comprising expanded, or flexible, graphite mixed into a polymer material is disclosed. A method for using expanded graphite that has been pre-compressed prior to milling to enable a polymer material to accept an electrostatic modification to the surface or to dissipate electrostatic discharges. Other embodiments relate to methods of making polymer materials, methods of making molded polymer articles or objects, and methods of electrostatically modifying molded conductive polymer materials.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: June 8, 2004
    Assignee: SGL Technic Inc.
    Inventors: Tommie P. Hayward, Mike G. Roemmler
  • Patent number: 6740260
    Abstract: A tungsten-precursor composite having a polymer matrix and a tungsten precursor therein. The tungsten precursor may be tungsten oxide, ammonium paratungstate, ammonium metatungstate or other precursor or combination of tungsten precursors. The polymer may be any of a very wide range of materials or combinations thereof. Binder, secondary fillers or other third components may be added. By means of use of various tungsten precursors, polymers, and third components, the physical, radiological and electrical properties of the finished products may be tailored to achieve desired properties. In addition, the invention teaches that radiation shielding, insulators, and combined radiation shield/insulators may be fashioned from the composite. A wide range of production methods may be employed, including but not limited to liquid resin casting.
    Type: Grant
    Filed: March 9, 2002
    Date of Patent: May 25, 2004
    Inventor: Stuart James McCord
  • Patent number: 6712997
    Abstract: The present invention relates to composite polymers containing nanometer-sized metal particles and manufacturing method thereof, which can be uniformly dispersed nanometer-sized metal particles into polymers, thereby allowing the use thereof as optically, electrically and magnetically functional materials. The method for manufacturing composite polymers containing nanometer-sized metal particles includes the steps of: dispersing at least one metal precursor into a matrix made of polymers in a molecule level; and irradiating rays of light on the matrix containing the metal precursors dispersed in the molecule level and reducing the metal precursors into metals and fixing nanometer sized metal particles inside of matrix.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: March 30, 2004
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Ok Won, Yong Soo Kang, Bum Suk Jung, Yeo Sang Yoon
  • Patent number: 6691358
    Abstract: The invention refers to a method for an integrated treatment of cellulose pulp. The method includes the steps: providing said cellulose pulp (1), providing a determined quantity of white liquor (2) including alkali and sulphur components, providing an oxygen-containing gas, oxidizing (5) the sulphur components of the white liquor by the supply of a part of said gas in such a way that at least a part of the sulphur is present in the form of sulphate, transporting the cellulose pulp having a certain kappa number to at least one mixing device (4), and supplying the oxidized white liquor from the oxidizing step to the cellulose pulp, supplying a part of said gas to the cellulose pulp in said mixing device, mixing the cellulose pulp with the oxidized white liquor and said gas in said mixing device, and transporting the cellulose pulp from said mixing device to a delignification reactor (6) for oxygen delignification of said cellulose pulp, wherein the kappa number is reduced.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 17, 2004
    Assignee: AGA Aktiebolag
    Inventors: Anders Tor Jörgen Engström, Anna Tigerström
  • Patent number: 6673273
    Abstract: Electrolyte compositions for use in cells and batteries that include a crosslinked solid ionically conductive polymer having urethane groups, urea groups, thiocarbamate groups, or combinations thereof, particles, and a salt. Certain electrolyte compositions include a liquid thereby forming a gel electrolyte composition.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: January 6, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Dinh Ba Le, Jerome Edward Scanlan, Ravindra L. Arudi
  • Patent number: 6653259
    Abstract: A method of fabricating large bulk high temperature superconducting articles which comprises the steps of selecting predetermined sizes of crystalline superconducting materials and mixing these specific sizes of particles into a homogeneous mixture which is then poured into a die. The die is placed in a press and pressurized to predetermined pressure for a predetermined time and is heat treated in the furnace at predetermined temperatures for a predetermined time. The article is left in the furnace to soak at predetermined temperatures for a predetermined period of time and is oxygenated by an oxygen source during the soaking period.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: November 25, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ronald J. Koczor, Robert A. Hiser
  • Patent number: 6632378
    Abstract: A nitrate ester plasticized energetic composition in which the binder is made of, prior to curing, lower alkylene glycol prepolymer blocks end-capped with ethylene glycol monomers and/or oligomers. The end-capped prepolymer blocks are preferably difunctional or trifunctional. The lower alkylene glycol are preferably propylene glycol, butylene glycol, and/or copolymers thereof. The difunctional end-capped alkylene glycol prepolymer blocks are cured with a diisocyanate or polyisocyanate. In the case of a trifunctional (or higher functional) end-capped alkylene glycol prepolymer block, preferably a diisocyanate is used to effect crosslinking.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: October 14, 2003
    Assignee: Alliant Techsystems Inc.
    Inventors: Ingvar A. Wallace, II, Jeffery Oyler
  • Patent number: 6602438
    Abstract: A structure for polymeric thermistor device and method of making the same are disclosed. The polymeric thermistor makes use of a polymeric composite filled with conductive filler and show resistance variations at different temperatures. A polymeric substrate filled with conductive filler is cross-linked so that the whole polymeric composite structure filled with conductive filler is able to memorize shape. Then, the cross-linked polymeric composite undergoes a simple-sheared process and turns into a polymeric composite with a strain more than 1%. Therefore, the micro-structure and electrical properties of the conductive filler are changed.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: August 5, 2003
    Assignee: Protectronics Technology Corporation
    Inventor: Chen-Ron Lin
  • Patent number: 6582628
    Abstract: A method for producing an electrically conducting melt-processible fluoropolymer comprising pulverizing a composition of (a) carbon aggregate and (b) coagulum particles of aqueous dispersion polymerized melt-processible fluoropolymer, coating the coagulum particle with the disintegrated particles of carbon black. The preferred composition comprises a structured carbon black such as acetylene black and a melt processible fluoropolymer wherein said melt processible fluoropolymer has two crystallization peaks in a DSC cooling curve when allowed to crystallize from a temperature of not less than its melting point at a cooling rate of 12° C./min; and the ratio of the crystallization peak heights (high temperature side peak/low temperature side peak) is 0.65 or greater; and/or the ratio of the high temperature side crystallization peak area to the total area of the crystallization peaks [high temperature side peak area/(high temperature side peak area+low temperature side peak area)] is 0.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: June 24, 2003
    Assignee: DuPont Mitsui Fluorochemicals
    Inventors: Shosaku Kondo, Kasuke Ishii, Hajime Sato, Jeong Chang Lee, Noriyuki Suzuki
  • Patent number: 6572793
    Abstract: A method of producing an electronic device including a dielectric layer includes a dielectric ceramic composition containing a main component expressed by a formula of {(Sr1−xCax)O}m.(Ti1−yZry)O2, wherein x fulfills 0≦x≦1.00 and y fulfills 0≦y≦0.20, and producing said dielectric ceramic composition by using a material expressed by a formula of {(Sr1−xCax)O}m′.(Ti1−yZry)O2 wherein the mole ratio m′ fulfills m′<m. It is possible to produce an electronic device, such as a chip capacitor, having excellent resistance to reducing during firing and excellent capacity-temperature characteristics after firing, wherein the insulation resistance is hard to be deteriorated particularly when made to be a thin layer and defect rate of the initial insulation resistance is low.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: June 3, 2003
    Assignee: TDK Corporation
    Inventors: Takashi Fukui, Yasuo Watanabe, Mikio Takahashi, Akira Sato
  • Patent number: 6572791
    Abstract: There is disclosed an elastic member constituted of polyurethane foam obtained by agitationally mixing with water, a urethane prepolymer synthesized from a polyol and a polyisocyanate, characterized by simultaneously employing as polyols, a (A) polymer polyol synthesized from a polyether polyol as a basis, comprising at least 70% by weight of oxypropylene moiety; and a (B) hydrophilic polyether polyol comprising at least 50% by weight of oxyethylene moiety, or simultaneously employing as polyols, the component (A), the component (B) and a (C) polyether polyol comprising at least 70% by weight of oxypropylene moiety. The above elastic member is simultaneously imparted with excellent characteristics such as low hardness, fine cells, low residual compressive strain, high strength and the like. The polyurethane foam which constitutes the elastic member can be produced by free foaming.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: June 3, 2003
    Assignee: Bridgestone Corporation
    Inventors: Junji Sakata, Hirotaka Yamazaki, Tadashi Nakajima, Takahiro Kawagoe
  • Patent number: 6511943
    Abstract: A process of preparing superconducting magnesium diboride powder by heating an admixture of solid magnesium and amorphous boron powder or pellet under an inert atmosphere in a Mg:B ratio of greater than about 0.6:1 at temperatures and for time sufficient to form said superconducting magnesium diboride. The process can further include exposure to residual oxygen at high synthesis temperatures followed by slow cooling. In the cooling process oxygen atoms dissolved into MgB2 segregated to form nanometer-sized coherent Mg(B,O) precipitates in the MgB2 matrix, which can act as flux pinning centers.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: January 28, 2003
    Assignee: The Regents of the University of California
    Inventors: Adriana C. Serquis, Yuntian T. Zhu, Frederick M. Mueller, Dean E. Peterson, Xiao Zhou Liao