Patents Examined by Karen Kusumakar
  • Patent number: 11631744
    Abstract: Disclosed are a semiconductor structure and a forming method thereof.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: April 18, 2023
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: Jisong Jin
  • Patent number: 11630212
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes: a substrate made by a first material or a first material-composite; an absorption layer made by a second material or a second material-composite, the absorption layer being supported by the substrate and the absorption layer including: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a dopant profile with a peak dopant concentration equal to or more than 1×1015 cm?3, wherein a distance between the first surface and a location of the channel region having the peak dopant concentration is less than a distance between the second surface and the location of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: April 18, 2023
    Assignee: Artilux, Inc.
    Inventors: Szu-Lin Cheng, Chien-Yu Chen, Shu-Lu Chen, Yun-Chung Na, Ming-Jay Yang, Han-Din Liu, Che-Fu Liang, Jung-Chin Chiang, Yen-Cheng Lu, Yen-Ju Lin
  • Patent number: 11631764
    Abstract: First and second p-type semiconductor regions (electric-field relaxation layers) are formed by ion implantation using a dummy gate and side wall films on both sides of the dummy gate as a mask. In this manner, it is possible to reduce a distance between the first p-type semiconductor region and a trench and a distance between the second p-type semiconductor region and the trench, and symmetry of the first and second p-type semiconductor regions with respect to the trench can be enhanced. As a result, semiconductor elements can be miniaturized, and on-resistance and an electric-field relaxation effect, which are in a trade-off relationship, can be balanced, so that characteristics of the semiconductor elements can be improved.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: April 18, 2023
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenichi Hisada, Koichi Arai, Hironobu Miyamoto
  • Patent number: 11626545
    Abstract: A light emitting device is disclosed. In an embodiment a light-emitting device includes a pixel comprising at least three sub-pixels, wherein the at least three sub-pixel include a first sub-pixel including a first conversion element, wherein the first conversion element includes a green phosphor, a second sub-pixel including a second conversion element, wherein the second conversion element includes a red phosphor and a third sub-pixel free of a conversion element, wherein the third sub-pixel is configured to emit blue primary radiation, wherein each sub-pixels has an edge length of at most 100 ?m, and wherein the pixel is a linear chain of sub-pixels and a plurality of pixels is arranged in a two dimensional ordered pattern so that a first sub-pixel is never adjacent to a third sub-pixel in a vertical direction and in a horizontal direction of the ordered pattern.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: April 11, 2023
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Benjamin Daniel Mangum, David O'Brien, Britta Göötz
  • Patent number: 11615982
    Abstract: A method includes forming a first dielectric layer over a source/drain region, and forming a source/drain contact plug over and electrically connecting to the source/drain region. A top portion of the source/drain contact plug has a first lateral dimension. An implantation process is performed to implant a dopant into the first dielectric layer. The implantation process results in the source/drain contact plug to have a second lateral dimension smaller than the first lateral dimension. The method further includes forming a second dielectric layer over the etch stop layer, and forming a gate contact plug adjacent to the source/drain contact plug.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: March 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Ju Chen, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Meng-Han Chou
  • Patent number: 11616193
    Abstract: A semiconductor device includes: a substrate comprising a magnetic tunneling junction (MTJ) region and a logic region, a MTJ on the MTJ region, a top electrode on the MTJ, a connecting structure on the top electrode, and a first metal interconnection on the logic region. Preferably, the first metal interconnection includes a via conductor on the substrate and a trench conductor, in which a bottom surface of the trench conductor is lower than a bottom surface of the connecting structure.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: March 28, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Chen-Yi Weng, Jing-Yin Jhang, Yu-Ping Wang, Hung-Yueh Chen
  • Patent number: 11615983
    Abstract: A semiconductor interconnect structure includes a conductive line electrically coupled to an active semiconductor device, a first etch stop layer formed over the conductive line, a first dielectric layer formed over the first etch stop layer, a second etch stop layer formed over the first dielectric layer, a second dielectric layer formed over the second etch stop layer, and an interconnect structure electrically coupled to the conductive line and extending through the first etch stop layer, the first dielectric layer, the second etch stop layer, and the second dielectric layer. The interconnect structure includes a via extending through the first etch stop layer, the second etch stop layer, and the first dielectric layer and a trench extending through the second dielectric layer.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: March 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chien-Han Chen, Chien-Chih Chiu, Shih-Yu Chang, Da-Wei Lin, Y.T. Chen
  • Patent number: 11610854
    Abstract: A device includes a redistribution structure, a first semiconductor device, a first antenna, and a first conductive pillar on the redistribution structure that are electrically connected to the redistribution structure, an antenna structure over the first semiconductor device, wherein the antenna structure includes a second antenna that is different from the first antenna, wherein the antenna structure includes an external connection bonded to the first conductive pillar, and a molding material extending between the antenna structure and the redistribution structure, the molding material surrounding the first semiconductor device, the first antenna, the external connection, and the first conductive pillar.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Hao Tsai, Po-Yao Chuang, Ming-Chih Yew, Shin-Puu Jeng
  • Patent number: 11610994
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region and a source/drain region in the active region adjacent the gate stack. The source/drain region includes a first semiconductor layer having a first germanium concentration and a second semiconductor layer over the first semiconductor layer. The second semiconductor layer has a second germanium concentration greater than the first germanium concentration. The source/drain region further includes a third semiconductor layer over the second semiconductor layer and a fourth semiconductor layer over the third semiconductor layer. The third semiconductor layer has a third germanium concentration greater than the second germanium concentration. The fourth semiconductor layer has a fourth germanium concentration less than the third germanium concentration.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Kun-Mu Li, Hsueh-Chang Sung
  • Patent number: 11605617
    Abstract: A light emitting device includes: a substrate including a base member including an upper surface, a lower surface and one or more lateral surfaces, and defining a recess that is opened at the upper surface and the lateral surfaces and surrounds an outer perimeter of the upper surface; a first light emitting element; a second light emitting element; a light guide member covering the first and the second light emitting elements and the upper surface of the base member; and a first reflective member having a closed-ring shape surrounding the upper surface of the base member and the light guide member, a portion of the first reflective member being located in the recess. At least one of the lateral surfaces of the base member and corresponding at least one of one or more outer lateral surfaces of the first reflective member are in the same plane.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: March 14, 2023
    Assignee: NICHIA CORPORATION
    Inventors: Takuya Nakabayashi, Yukiko Yokote
  • Patent number: 11605589
    Abstract: A method of forming a microelectronic device comprises forming a stack structure comprising vertically alternating insulating structures and conductive structures arranged in tiers. Each of the tiers individually comprises one of the insulating structures and one of the conductive structures. A sacrificial material is formed over the stack structure and pillar structures are formed to extend vertically through the stack structure and the sacrificial material. The method comprises forming conductive plug structures within upper portions of the pillar structures, forming slots extending vertically through the stack structure and the sacrificial material, at least partially removing the sacrificial material to form openings horizontally interposed between the conductive plug structures, and forming a low-K dielectric material within the openings. Microelectronic devices, memory devices, and electronic systems are also described.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: March 14, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Naveen Kaushik, Sidhartha Gupta, Pankaj Sharma, Haitao Liu
  • Patent number: 11605591
    Abstract: An interconnection structure, along with methods of forming such, are described. The structure includes a dielectric material and a conductive feature extending through the dielectric material. The conductive feature includes a conductive material and has a first top surface. The structure further includes a dummy conductive feature disposed adjacent the conductive feature in the dielectric material, and the dummy conductive feature has a second top surface substantially co-planar with the first top surface. An air gap is formed in the dummy conductive feature.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: March 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Wei Li, Guanyu Luo, Shin-Yi Yang, Ming-Han Lee
  • Patent number: 11605558
    Abstract: A method includes providing a substrate, a dielectric layer over the substrate, and metallic features over the dielectric layer; and forming an organic blocking layer (OBL) over the dielectric layer and between lower portions of the metallic features. The OBL covers sidewall surfaces of the lower portions, but not upper portions, of the metallic features. The method further includes depositing a dielectric barrier layer over top surfaces of the metallic features and over the sidewall surfaces of the upper portions of the metallic features, wherein at least a portion of a top surface of the OBL is not covered by the dielectric barrier layer; forming an inter-metal dielectric (IMD) layer between the metallic features and above the OBL; and removing the OBL, leaving an air gap above the dielectric layer, below the dielectric barrier layer and the IMD layer, and laterally between the lower portions of the metallic features.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: March 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Lung Chung, Shin-Yi Yang, Ming-Han Lee
  • Patent number: 11600618
    Abstract: A includes depositing a gate electrode layer over a semiconductor substrate; patterning the gate electrode layer into a first gate electrode and a gate electrode extending portion; forming a first gate spacer alongside the first gate electrode; patterning the gate electrode extending portion into a second gate electrode after forming the first gate spacer; and forming a second gate spacer alongside the second gate electrode and a third gate spacer around the first spacer.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay Chuang, Li-Feng Teng, Wei-Cheng Wu, Fang-Lan Chu, Ya-Chen Kao
  • Patent number: 11600624
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a first dielectric fin, a first semiconductor fin and a second dielectric fin over a substrate. The first semiconductor fin interposes between and is spaced apart from the first dielectric fin and the second dielectric fin. The semiconductor structure also includes a first source/drain structure over a source/drain portion of the first semiconductor fin, an inter-layer dielectric layer covering a first portion of an upper surface of the first source/drain structure and an upper surface of the second dielectric fin, and a first contact in the inter-layer dielectric layer and covering a second portion of the upper surface of the first source/drain structure and an upper surface of the first dielectric fin.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 11600534
    Abstract: A semiconductor device includes a first device region and a second device region. The first device region includes a first source/drain region extending from a substrate and a first and a second pair of spacers. The first source/drain region extends between the first pair of spacers and the second pair of spacers. The first pair of spacers and the second pair of spacers have a first height. The second device region includes a second and a third source/drain region extending from the substrate and a third and a fourth pair of spacers. The third source/drain region is separate from the second source/drain region. The second source/drain region extends between the third pair of spacers. The third source/drain region extends between the fourth pair of spacers. The third pair of spacers and the fourth pair of spacers have a second height greater than the first height.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Li-Li Su, Yee-Chia Yeo
  • Patent number: 11598005
    Abstract: A deposition chamber includes a vacuum enclosure, an electrostatic chuck having a flat top surface located within a vacuum enclosure, a lift-and-rotation unit extending through or laterally surrounding the electrostatic chuck at a position that is laterally offset from a vertical axis passing through a geometrical center of the electrostatic chuck, a gas supply manifold configured to provide influx of gas into the vacuum enclosure, and a pumping port connected to the vacuum enclosure.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: March 7, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Shoichi Murakami, Shigeru Nakatsuka, Syo Fukata, Yusuke Osawa, Shigehiro Fujino, Masaaki Higashitani
  • Patent number: 11600520
    Abstract: A memory device includes first transistor over a semiconductor substrate, wherein the first transistor includes a first word line extending over the semiconductor substrate; a second transistor over the semiconductor substrate, wherein the second transistor includes a second word line extending over the first word line; a first air gap extending between the first word line and the second word line; a memory film extending along and contacting the first word line and the second word line; a channel layer extending along the memory film; a source line extending along the channel layer, wherein the memory film is between the source line and the word line; a bit line extending along the channel layer, wherein the memory film is between the bit line and the word line; and an isolation region between the source line and the bit line.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sheng-Chen Wang, Kai-Hsuan Lee, Sai-Hooi Yeong, Chia-Ta Yu, Han-Jong Chia
  • Patent number: 11594490
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers, and memory stack structures vertically extending through the alternating stack. Each of the memory stack structures includes a respective vertical semiconductor channel and a respective vertical stack of memory elements located at levels of the electrically conductive layers. Each of the electrically conductive layers includes a respective conductive liner comprising molybdenum carbide or carbonitride, and a respective molybdenum metal fill material portion.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: February 28, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Rahul Sharangpani, Raghuveer S. Makala, Fei Zhou
  • Patent number: 11594495
    Abstract: A microelectronic device comprises a stack structure comprising insulative levels vertically interleaved with conductive levels. The conductive levels individually comprise a first conductive structure, and a second conductive structure laterally neighboring the first conductive structure, the second conductive structure exhibiting a concentration of ?-phase tungsten varying with a vertical distance from a vertically neighboring insulative level. The microelectronic device further comprises slot structures vertically extending through the stack structure and dividing the stack structure into block structures, and strings of memory cells vertically extending through the stack structure, the first conductive structures between laterally neighboring strings of memory cells, the second conductive structures between the slot structures and strings of memory cells nearest the slot structures. Related memory devices, electronic systems, and methods are also described.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: February 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins, Everett A. McTeer, Yiping Wang, Rajesh Balachandran, Rita J. Klein, Yongjun J. Hu