Patents Examined by Ken Vanderpuye
  • Patent number: 9063355
    Abstract: In an optical modulation device, a driver applies a drive signal based on a data signal to a modulation unit, the modulation unit modulates the light input from an LD by the drive signal, and a bias control unit calculates a bias voltage value so as to make the f0 element closer to “0,” according to a detection result in a synchronization detection unit, and supplies a bias voltage of the calculated voltage value to the modulation unit. The bias control unit stops ABC control when the data signal is in a state different from a predefined state during the ABC control, and, after the stop of the ABC control, restarts the ABC control using, as an initial value, a bias voltage value calculated before the stop of the ABC control.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: June 23, 2015
    Assignee: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventor: Tamotsu Akashi
  • Patent number: 9065582
    Abstract: Data center network architectures, systems, and methods that can reduce the cost and complexity of data center networks. Such data center network architectures, systems, and methods employ physical optical ring network and multi-dimensional network topologies and optical nodes to efficiently allocate bandwidth within the data center networks, while reducing the physical interconnectivity requirements of the data center networks. The respective optical nodes can be configured to provide various switching topologies, including, but not limited to, chordal ring switching topologies and multi-dimensional chordal ring switching topologies.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: June 23, 2015
    Assignee: PLEXXI INC.
    Inventors: Richard A. Barry, David J. Husak, Derek E. Spock, Matthew William Morgan, Peter B. Everdell, Ruoding Li
  • Patent number: 9059799
    Abstract: An apparatus comprising a processor configured to calculate a noise figure of an optical amplifier for a plurality of selected wavelength channels in a partial-fill scenario that accounts for channel loading. The noise figure is calculated using a plurality of corresponding noise figure correction values at a plurality of wavelengths based on an effective number of channels.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: June 16, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Zhiping Jiang, Jian Zhong, Yan Cui
  • Patent number: 9057846
    Abstract: Messages on controller area net work (CAN) buses are communicated over subsea optical links. An adaptor couples a CAN bus to an optical link. The adaptor detects a direction of transmission, that is, whether a signal began on the CAN bus coupled to the adaptor or on the optical link coupled to the adaptor. Signals from the CAN bus are conditionally transmitted to the optical link depending on the detected direction of transmission. The adaptor can operate at the physical layer without analyzing contents of the CAN bus communications.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 16, 2015
    Assignee: Teledyne Instruments, Inc.
    Inventor: Huijiang Xi
  • Patent number: 9054796
    Abstract: In an embodiment, a dual optical-electrical conversion (DOEC) module is described that includes an optical host interface, an optical network interface, and an integrated circuit. The optical host interface includes an optical transmitter and an optical receiver. The optical network interface includes an optical transmitter and an optical receiver. The integrated circuit conditions electrical signals communicated between the optical host interface and optical network interface. Optical signals received at and transmitted by the optical host interface may have different parameter requirements than optical signals received at and transmitted by the optical network interface, such as different wavelength parameters and/or fiber link length parameters.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: June 9, 2015
    Assignee: FINISAR CORPORATION
    Inventor: Giuliano Coli
  • Patent number: 9054828
    Abstract: A method for generating optical paths in a photonic network is provided. A model of a photonic network is used to store relationship information that describes the relationships between photonic network elements, as well as configuration information about the elements of the photonic network. A path manager receives a request to generate one or more paths based on an input port and one or more output ports. Using the information stored in the photonic network model, the path manager generates one or more candidate paths.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: June 9, 2015
    Assignee: Glimmerglass Networks, Inc.
    Inventor: Xiongwei He
  • Patent number: 9054888
    Abstract: Systems and methods for providing broadband communication are provided. A source component may be configured to provide a downstream broadband signal to one or more customer devices and receive upstream signals from the customer devices, including a first upstream signal having a frequency lower than the downstream broadband signal and a second upstream signal having a frequency higher than the downstream broadband signal. An optical fiber node in communication with the source component may be configured to receive and convert downstream and upstream broadband signals from radio frequency signals to light signals and vice versa. A terminator in communication with the optical fiber node via one or more cable lines may be configured to output the radio frequency downstream signal for receipt by the customer devices and to direct the communication of the upstream signals to the optical fiber node via the one or more cable lines.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: June 9, 2015
    Assignee: Cox Communications, Inc.
    Inventor: Jeffrey L. Finkelstein
  • Patent number: 9054831
    Abstract: A method and system of determining a new path through an optical network from a source node to a destination node when a link in an original path fails are disclosed. When a fault on a link is detected, adjoint weights are assigned to each operational link for each node on the original path. A connection cost is determined for each node based on the adjoint weights of the links connected to the node. A new path through the optical network is determined based at least in part on the adjoint weights and the connection costs.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: June 9, 2015
    Assignee: Ciena Corporation
    Inventors: Anurag Prakash, Mohit Chhillar, Marian Trnkus
  • Patent number: 9049494
    Abstract: Disclosed herein are systems, methods, and non-transitory computer-readable storage media for performing an action during playback based on a media manifest file. A system, such as a media player, configured to practice the method receives a media manifest, extracts, from the media manifest, a list of media chunks and at least one tag associated with the list of media chunks. The list of media chunks can describe two or more separate media assets. Then the system parses the at least one tag to identify an action to perform during playback and a playback position to perform the action. The system retrieves, for playback, at least one media chunk associated with the playback position from the list of media chunks, and, during playback of the at least one media chunk and at the playback position, performs the action. Modifying the media playback control can include temporarily disabling a media playback control.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: June 2, 2015
    Assignee: CBS Interactive, Inc.
    Inventors: Jignesh Yashwant Dhruv, Shalitha Arosha Senanayake, Christopher Peter Xiques
  • Patent number: 9048956
    Abstract: In a coherent optical receiver device, the dynamic range considerably decreases in the case of selectively receiving the optical multiplexed signals by means of the wavelength of the local oscillator light, therefore, a coherent optical receiver device according to an exemplary aspect of the invention includes a coherent optical receiver receiving optical multiplexed signals in a lump in which signal light is multiplexed; a variable optical attenuator; a local oscillator connected to the coherent optical receiver; and a first controller controlling the variable optical attenuator by means of a first control signal based on an output signal of the coherent optical receiver; wherein the coherent optical receiver includes a 90-degree hybrid circuit, a photoelectric converter, and an impedance conversion amplifier, and selectively detects the signal light interfering with local oscillation light output by the local oscillator out of the optical multiplexed signals; and the variable optical attenuator is disposed
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: June 2, 2015
    Assignee: NEC CORPORATION
    Inventor: Kouichi Suzuki
  • Patent number: 9048959
    Abstract: Example method, apparatus, and system embodiments are disclosed to provide a high data throughput optical communication link. An example embodiment comprises: a high frequency optical receiver configured to receive signals modulated with high frequency data; an optical waveguide having a receiving portion and a transmitting portion juxtaposed with the receiver, configured to transfer signals incident on the receiving portion, to the transmitting portion, and to transmit the signals to the receiver; a guide portion configured to releasably engage another apparatus, for positioning the waveguide with respect to the other apparatus, to receive at the receiving portion of the waveguide, signals from the other apparatus, for delivery to the receiver; and a wireless power circuit configured to exchange wireless power with the other apparatus, to convert between electrical signals modulated with high frequency data and the optical signals modulated with high frequency data received by the waveguide.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: June 2, 2015
    Assignee: Nokia Corporation
    Inventors: Martti Voutilainen, Riku Suomela
  • Patent number: 9048952
    Abstract: A switch is inserted and connected between a first portion and a second portion of an HPD line. The switch connects the first portion to the second portion when an HPD signal is outputted to the second portion. The switch cuts off the connection between the first portion and the second portion when the HPD signal is not outputted to the second portion. An AND gate generates a connection state detection signal that represents the connection state of an HDMI optical active cable, and outputs the connection state detection signal to a switch.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 2, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Tsutomu Niiho, Osamu Shibata, Yoshiyuki Saito
  • Patent number: 9048947
    Abstract: A fiber optic communication system includes a first fiber optic device configured to transmit a fiber optic signal. A second fiber optic device is in fiber optic communication with and configured to receive the fiber optic signal from the first fiber optic device. The second fiber optic device includes an adjustment circuit configured to automatically adjust the fiber optic signal if the fiber optic signal is transmitted outside of a predetermined signal strength range.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: June 2, 2015
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: Koutoung Chou
  • Patent number: 9042738
    Abstract: The invention relates to embedding data symbols of a data signal into a luminance output of an illumination device. The device includes a controller configured for receiving a first base pattern and a second base pattern within a frame period, and generating a shifted second pattern by phase shifting the second base pattern within the frame period with respect to the first base pattern in response to the data signal such that the data symbols are embedded in the luminance output of the device. The device also includes a first light source configured to generate a first luminance output in response to the first base pattern and a second light source configured to generate a second luminance output in response to the shifted second pattern. The first and second luminance outputs have different output spectra and the luminance output of the illumination device comprises both the first and second luminance outputs.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: May 26, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Tim Corneel Wilhelmus Schenk, Matthias Wendt, Harald Josef Günther Radermacher, Johan Wilhelmus Hermanus Kuppen
  • Patent number: 9042725
    Abstract: The present invention refers to a method for adjusting power levels of channels (15) in an optical link (7) of an optical network comprising at least one optical amplifier (9) wherein the power distribution among the channels (15) of the optical link (7) is achieved in function of: target power levels based on the features of corresponding connections and of link physical features, total available power in said at least one amplifier (9), features of control means allowing the power distribution, and wherein for a channel corresponding to a connection having a higher vulnerability characterizing parameter, the tolerated difference between an actual channel power level and the target power level is lower than for a channel corresponding to a connection having a lower vulnerability characterizing parameter.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: May 26, 2015
    Assignee: Alcatel Lucent
    Inventors: Pierre Peloso, Eric Fabre, Pascal Pecci
  • Patent number: 9042729
    Abstract: This invention relates to provisioning wavelength-selective switches and reconfigurable optical add-drop multiplexers to minimize the bandwidth narrowing effect from the optical filters. Novel architectures and methods are disclosed that can significantly reduce bandwidth-narrowing on channels in a reconfigurable WDM network where a large number of optical filter elements are cascaded. Instead of blocking unused channels as in the prior art, unused channels are selectively provisioned depending on the state of their adjacent channels. Unused adjacent channels of an active channel are provisioned to follow the same path as the active channels. As each channels is deployed, the channel frequency is selected so as to minimize bandwidth narrowing.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 26, 2015
    Assignee: TREQ LABS, INC.
    Inventors: Chris Wilhelm Barnard, Piotr Myslinski
  • Patent number: 9042726
    Abstract: An optical transport network system includes a plurality of NEs, each transmitting wavelength-multiplexed optical signals. Each NE includes a routing information DB that is used to store reachable area information, which contains identifiers of other NEs in a range within which the optical signals can be transmitted from the own NE without using an REG. A FROM NE includes a path candidate searching unit that searches for a plurality of path candidates for transmitting optical signals from the FROM NE to a TO NE. The TO NE includes a path selecting unit that selects a path for transmitting optical signals from among a plurality of path candidates. The path selecting unit obtains the number of times for which the REG is used for each of the plurality of path candidates; and, based on each number of times that is obtained, selects a path for transmitting the optical signals.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: May 26, 2015
    Assignee: FUJITSU LIMITED
    Inventors: Toshihiro Togo, Yasuko Nozu
  • Patent number: 9036991
    Abstract: An optical transceiver has a communications mode and an optical time domain reflectometer (OTDR) mode. The transceiver comprises a transmitter channel and a receiver channel operable, in the communications mode, to respectively transmit and receive communications signals through respective external optical fibers. The transceiver also comprises a guide arrangement for guiding, in the OTDR mode, a reflected OTDR signal along a path from the transmitter channel into the receiver channel. A method of obtaining test data for an optical fiber in an optical data communications subsystem is also disclosed.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: May 19, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Jerry G. Aguren
  • Patent number: 9036992
    Abstract: Methods and systems for decoding a signal include compensating for impairments in a received signal using at least carrier phase estimation, where residual phase error remains after compensation; calculating symbol log-likelihood ratios (LLRs) for symbols in the compensated signal using Monte Carlo integration; demapping the symbols in the compensated signal using the symbol LLRs and extrinsic information from signal decoding to produce one or more estimated codewords; and decoding each estimated codeword with a decoder that generates a decoded codeword and extrinsic information.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 19, 2015
    Assignee: NEC Laboratories America, Inc.
    Inventors: Ivan B. Djordjevic, Ting Wang
  • Patent number: 9037002
    Abstract: A pre-emphasis control method includes calculating an average value of transmission characteristics based on transmission characteristics of a plurality of light beams received by a receiver, and determining that, among signals of the plurality of light beams, a wavelength with a deviation from the average value is a wavelength at which control is to be performed, determining that the wavelength at which control is to be performed and a wavelength adjacent thereto are a group of wavelengths at which control is to be performed, obtaining an average of transmission characteristics of the group of wavelengths at which control is to be performed, and based on a difference between averaged transmission characteristics and respective transmission characteristics of the group of wavelengths at which control is to be performed, changing a light intensity output from each transmitter that transmits a group of wavelengths at which control is to be performed.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: May 19, 2015
    Assignee: FUJITSU LIMITED
    Inventors: Jyunji Tanaka, Shinichi Kaneko, Takeo Osaka