Patents Examined by Kenneth Vanderpuye
  • Patent number: 9112610
    Abstract: In a network that includes one or a plurality of optical line terminals, a plurality of branches, and an optical routing unit, the optical network unit registration method includes a first process in which the optical line terminals transmit a discovery gate to the optical network units, and a second process in which, in response to the discovery gate, an unregistered optical network unit transmits a register request to a separate optical line terminal from the terminal that transmitted the discovery gate. A discovery window is provided in the optical line terminal that receives the register request. This optical line terminal receives the register request in the discovery window.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 18, 2015
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Masahiro Sarashina
  • Patent number: 8879909
    Abstract: A circuit, optical transceiver and/or methods for using the same may be useful for determining average power, extinction ratio, and/or modulation amplitude when monitoring an optical transceiver and/or optical network. The circuit generally comprises a photodiode configured to generate a first current responsive to an optical signal, a current mirror coupled to a first terminal of the photodiode, and a detector coupled to a second terminal of the photodiode. The current mirror is configured to produce a second current equal to or proportional to the first current, and the detector is configured to determine a power or amplitude of the optical signal. Further, the present scheme may communicate information using a low speed signal superimposed on or combined with the relatively high speed optical signal.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: November 4, 2014
    Assignee: Source Photonics, Inc.
    Inventors: Mark Heimbuch, Mohammad Azadeh
  • Patent number: 8855498
    Abstract: A method for suppressing a skew between a first channel and a second channel in an optical transmission system having a transmitter that transmits an optical signal with the first channel and the second channel and a receiver that receives the optical signal, the method includes: controlling dispersion added to the optical signal to be larger than a specified amount; and controlling a delay time of at least one of the first channel and the second channel in the receiver based on a quality of the optical signal monitored in the receiver to suppress the skew between the first channel and the second channel in the receiver.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: October 7, 2014
    Assignee: Fujitsu Limited
    Inventors: Toshiki Tanaka, Masato Nishihara
  • Patent number: 8787775
    Abstract: In one embodiment, the opto-electronic assembly is a hybrid integrated circuit having an array of avalanche photodiodes (APDs) that are electrically coupled to a corresponding array of transimpedance amplifiers (TIAs), with both the APDs and TIAs being mounted on a common ceramic substrate. The opto-electronic assembly further has an optical subassembly comprising an arrayed waveguide grating (AWG) and an array of turning mirrors, both attached to a temperature-control unit in a side-by-side arrangement and flip-chip mounted on the substrate over the APDs. The opto-electronic assembly employs a silicon-based submount inserted between the APDs and the substrate to accommodate the height difference between the APDs and the TIAs. The submount advantageously enables the placement of APDs in relatively close proximity to the turning mirrors while providing good control of the APD's tilt and offset distance with respect to the substrate.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 22, 2014
    Assignee: Alcatel Lucent
    Inventor: Mark P. Earnshaw
  • Patent number: 8718476
    Abstract: There is provided a method and apparatus for tuning an optical discriminator to the carrier frequency of an optical signal to allow superior reception of said signal. The carrier frequency of the signal is dithered during a test phase in order to provide information that allows a subsequent tuning phase to optimise the reception of the optical signal, as measured by a signal quality metric. The tuning phase may comprise adjustment of one or both of the carrier frequency and the optical discriminator.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: May 6, 2014
    Assignee: Xtera Communications, Inc.
    Inventors: Steven Webb, David Winterburn
  • Patent number: 8705956
    Abstract: A system and method are provided for carrier frequency offset (CFO) estimation for coherent optical orthogonal-frequency-division-multiplexing (CO-OFDM) broadband systems. The method includes obtaining an initial estimate of a normalized CFO with an estimation range equal to ±L/2 subcarrier subspacing using a single training symbol with L identical portions. The method further includes obtaining a maximum likelihood (ML) estimate of the CFO by performing a local grid search based on the initial estimate.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: April 22, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Mingzheng Cao, Dayou Qian
  • Patent number: 8634713
    Abstract: A method of monitoring (200) an optical fiber comprises modulating (210) an optical signal with a traffic signal; modulating (220) the optical signal with an incoherent optical frequency domain reflectometry, IOFDR, test signal; transmitting (230) the doubly modulated optical signal onto an optical fiber at a first end of the fiber; detecting (240) scattered radiation output from the first end of the fiber; and analyzing (250) the detected scattered radiation using incoherent optical frequency domain reflectometry to determine a distance to a break in the optical fiber. Apparatus suitable for carrying out the method is also described, as well as an optical communications network employing the method.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 21, 2014
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Carlo Campanelli, Roberto Magri
  • Patent number: 8606106
    Abstract: An optical fiber network comprises a laser source (1a) configured to generate laser light of a plurality of wavelengths. A first optical fiber (4a), transmits multi-wavelength light from the laser source to a location remote from the laser source. A wavelength division multiplexer (2) at the remote location (203) is connected to a plurality of second optical fibers (8). A plurality of optical modulators (9) are each connected optically to the wavelength division multiplexer (2) via a respective second optical fiber (8). The wavelength division multiplexer (2) is arranged to de-multiplex the multi-wavelength light received from the first optical fiber (4a) into a plurality of wavelengths and to supply a respective wavelength to each of the second optical fibers (8). The optical modulators (9) are reflective optical modulators each arranged to modulate light received from the associated second optical fiber (8) with a data signal and to reflect the modulated light back along the second optical fiber (8).
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 10, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Peter Healey, David William Smith
  • Patent number: 8582975
    Abstract: Consistent with the present disclosure, an optical communication system, such as a passive optical network (PON), is provided that includes an optical line terminal (OLT) and a plurality of optical network units (ONUs). The OLT includes a plurality of photonic integrated circuits that have both optical transmitters and receivers provided therein. Accordingly, the OLT may have fewer components and a simpler, more reliable and cost-effective design than a conventional OLT including discrete components. In addition, various ONU configurations are provided that also have a simple design and fewer components. Thus, ONUs consistent with the present disclosure may also have reduced costs.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 12, 2013
    Assignee: Infinera Corporation
    Inventors: Radhakrishnan L. Nagarajan, Christopher C. Liou, Masaki Kato
  • Patent number: 8532494
    Abstract: An optical bidirectional communication module includes a light-emitting element, a light-receiving element and an optical waveguide. The optical waveguide performs wavelength division on light received from an optical fiber and guides the received light to the light-receiving element. The optical waveguide also performs wavelength division on light emitted from the light-emitting element and guides the emitted light to the optical fiber. The light-emitting element, the light-receiving element and the optical waveguide are incorporated on an optical substrate.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: September 10, 2013
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Daisuke Shimura
  • Patent number: 8442406
    Abstract: The present invention relates to filter, coherent receiver device and coherent receiving method. The filter is used for converting a partial response signal into a full response signal, wherein the filter uses the following transfer function HPre-Filter(z) with respect to a partial response signal having a transfer function H PR ? ( z ) = A ? ( 1 + z - 1 ) m ? ( 1 - z - 1 ) n : ? ? H Pre - Filter ? ( z ) = 1 A ? ( 1 + ? ? ? z - 1 ) m ? ( 1 - ? ? ? z - 1 ) n , in which A is other item, m and n are integers larger than or equal to 0 but not being 0 at the same time, 0<?<1.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: May 14, 2013
    Assignee: Fujitsu Limited
    Inventors: Jianqiang Li, Huijian Zhang, Zhenning Tao, Takahito Tanimura
  • Patent number: 8270848
    Abstract: A device and a method for receiving a differential quadrature phase shift keying (DQPSK) signal and a method for obtaining a DQPSK signal are provided. The device includes: a splitter, configured to split the DQPSK signal to obtain two optical signals; two optical bandpass filters, connected to the splitter and configured to optically bandpass filter the two optical signals respectively, in which the two optical bandpass filters respectively have a positive frequency offset and a negative frequency offset from a central frequency of the DQPSK signal received by the splitter; and two photoelectric detectors, correspondingly connected to the two optical bandpass filters and configured to photoelectrically convert the filtered optical signals to obtain data signals.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: September 18, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xinliang Zhang, Lun Wei, Wei Fu
  • Patent number: 8064779
    Abstract: A receiving apparatus which suppresses threshold-voltage changes. A peak voltage detection block detects the peak voltage of a signal. A bottom voltage detection block detects the bottom voltage of the signal. A stop control block generates a stop signal for stopping the operations to detect the peak voltage and the bottom voltage. A threshold value specification block specifies a threshold voltage derived from the peak voltage and the bottom voltage. When receiving the stop signal, the peak voltage detection block stops the operation to detect the peak voltage and retains the peak voltage detected before the reception of the stop signal while the same signal is being received. When receiving the stop signal, the bottom voltage detection block stops the operation to detect the bottom voltage and retains the bottom voltage detected before the reception of the stop signal while the same signal is being received.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 22, 2011
    Assignee: Fujitsu Limited
    Inventor: Yukito Tsunoda
  • Patent number: 8059968
    Abstract: The present invention discloses a modulation device for generating an optical signal with quadruple frequency and the modulation method thereof. The modulation device in the present invention utilizes a commercial integrated modulator, a RF signal generator and a phase shifter to generate an optical signal with quadruple frequency. When the RF signal generator generates a first modulation signal, and the phase shifter shifts the first modulation signal by 90 degrees to generate a second modulation signal, the integrated modulator is biased to transmit the optical signal in maximum value and to modulate the first and second modulation signal so as to generate a output optical signal with quadruple frequency.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: November 15, 2011
    Assignee: National Chiao Tung University
    Inventors: Jye Hong Chen, Chun-Ting Lin, Po Tsung Shih, Peng-Chun Peng, Sheng Peng Dai, Wen Qiang Xue, Sien Chi
  • Patent number: 7471895
    Abstract: A method is provided for locating a fault in one or more optical amplifiers operating in saturation and located along an optical transmission path. The method begins by generating a coherent optical time domain reflectometry (COTDR) trace representing a backscattered and/or reflected optical power level along the transmission path and comparing the trace to a reference trace to generate a difference trace that represents a change in gain. The change in gain is assigned to at least one of the optical amplifiers based on the difference trace. The method comprises assigning the difference trace to faults in the optical amplifiers, equating the difference trace with a linear combination of difference trace vectors each arising from a fault in a different one of the optical amplifiers, and iterating to determine a coefficient value associated with each difference trace vector. Each nonzero coefficient value denotes a fault in an optical amplifier.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: December 30, 2008
    Assignee: Red Sky Subsea, Ltd.
    Inventor: Jonathan A. Nagel
  • Patent number: 7460784
    Abstract: The invention relates to a method for easily and rapidly preemphasizing an optical multiplex signal transmitted by an emitter to a receiver consisting wherein signal-to-noise ratios are equalized by means of simple measurement or new adjustment of signal power on the bandwidth of the optical multiplex signal, at least in the receiver, instead of measuring the noise output power or the signal-to-noise ratio. Said invention is based on a balance of the signal-to-noise ratios which are authorized by a transmitting system, in which the spectral influences of gain profiles, noise effects and dampings are taken into consideration. In particular, when DWDM transmission techniques are applied, in which adjacent channel spacings of the optical multiplex signal are very low, the inventive method makes it possible to use a small number of sensitive and high-resolution measuring instruments for pre-emphasis control.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: December 2, 2008
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventors: Christian Eder, Wolfgang Peisl, Lutz Rapp
  • Patent number: 7454142
    Abstract: A data transmission method and apparatus is disclosed by which bidirectional transmission of a plurality of optical signals obtained by conversion of a plurality of serial digital data can be achieved efficiently using a single common optical signal transmission cable. A plurality of serial data based on digital video signals from a camera section are converted into a plurality of optical signals using a CWDM technique and then multiplexed into a multiplexed optical signal. The multiplexed optical signal is signaled to a signal transmission cable through a bidirectional WDM coupler disposed at a first end of the optical signal transmission cable so as to be transmitted from the first end to a second end of the optical signal transmission cable.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: November 18, 2008
    Assignee: Sony Corporation
    Inventor: Shigeyuki Yamashita
  • Patent number: 7450863
    Abstract: A WDM receiver that includes a single, delay interferometer coupled to an N-channel wavelength-demultiplexing filter provides for the simultaneous conversion of a multiplex of N differential-phase-shift-keyed modulated optical signals of different wavelengths into N intensity-modulated optical signal channels. The Nintensity-modulated optical signals may be individually detected by a bank of N photodiode circuits to recover the modulated data stream or used for optical amplification, regeneration, processing, control, or modulation.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: November 11, 2008
    Assignee: Lucent Technologies Inc.
    Inventor: Peter J. Winzer
  • Patent number: 7450860
    Abstract: An optical transmission apparatus employing an FSK scheme is disclosed. The optical transmission apparatus includes a light generator arranged to generate a first tone signal having a first frequency and a second tone signal having a second frequency. The optical transmission apparatus also includes a light modulator including a second modulator for selectively outputting one of the first tone signal and the second tone signal input from the light generator according to input data.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: November 11, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoon Kim, Yun-Je Oh, Seong-Taek Hwang
  • Patent number: 7450849
    Abstract: A wavelength-division multiplexing passive optical network (WDM-PON) comprising a central office for generating monitor light and multiplexed downstream optical signals to be out and detecting upstream optical signals, the central office including a signal monitoring unit monitoring based on fed-back monitor light if the wavelengths of the upstream optical signals and the wavelengths of the downstream optical signals change, a plurality of subscriber units for detecting corresponding downstream optical signals and generating upstream optical signals, a remote node for reflecting the monitor light to the central office, de-multiplexing multiplexed downstream optical signals so as to output the downstream optical signals to the corresponding subscriber units, and multiplexing the upstream optical signals so as to output the upstream optical signals to the central office, a first optical path for linking the central office to the remote node, and a plurality of second optical paths for linking the remote node to
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: November 11, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ho Kim, Chang-Sup Shim, Yun-Je Oh, Seong-Taek Hwang