Patents Examined by Khaja Ahmad
  • Patent number: 11974450
    Abstract: The present disclosure provides a display panel including a first substrate, pixels arranged on the first substrate and configured to define a display area, a second substrate facing the first substrate, an insulating layer on the first substrate and including an edge that is closer to the display area than an edge of the first substrate, a conductive layer on the insulating layer, and a sealing member between the first substrate and the second substrate and surrounding the display area.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: April 30, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seungjae Lee, Hyesoo Jee, Wongeun Lee, Hansoo Kim, Kyungmin Park
  • Patent number: 11972999
    Abstract: A structure includes an electrical device, and an active contact landed on a portion of the electrical device. The active contact includes a first body of a first material. A thermal dissipation pillar is adjacent the active contact and unlanded on but over the portion of the electrical device. The thermal dissipation pillar includes a second body of a second material having a higher thermal conductivity than the first material. The thermal dissipation pillar may be in thermal communication with a wire in a dielectric layer over the active contact and the thermal dissipation pillar. The electrical device can be any integrated circuit device that generates heat.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: April 30, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Mark D. Levy, Rajendran Krishnasamy, Michael J. Zierak, Siva P. Adusumilli
  • Patent number: 11967642
    Abstract: A semiconductor structure includes a buffer layer, a channel layer, a barrier layer, a doped compound semiconductor layer, and a composition gradient layer. The buffer layer is disposed on a substrate, the channel layer is disposed on the buffer layer, the barrier layer is disposed on the channel layer, the doped compound semiconductor layer is disposed on the barrier layer, and the composition gradient layer is disposed between the barrier layer and the doped compound semiconductor layer. The barrier layer and the composition gradient layer include a same group III element and a same group V element, and the atomic percentage of the same group III element in the composition gradient layer is gradually increased in the direction from the barrier layer to the doped compound semiconductor layer. A high electron mobility transistor and a fabrication method thereof are also provided.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: April 23, 2024
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chih-Yen Chen, Tuan-Wei Wang, Franky Juanda Lumbantoruan, Chun-Yang Chen
  • Patent number: 11955338
    Abstract: A method includes providing a substrate having a surface such that a first hard mask layer is formed over the surface and a second hard mask layer is formed over the first hard mask layer, forming a first pattern in the second hard mask layer, where the first pattern includes a first mandrel oriented lengthwise in a first direction and a second mandrel oriented lengthwise in a second direction different from the first direction, and where the first mandrel has a top surface, a first sidewall, and a second sidewall opposite to the first sidewall, and depositing a material towards the first mandrel and the second mandrel such that a layer of the material is formed on the top surface and the first sidewall but not the second sidewall of the first mandrel.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Chun Huang, Ya-Wen Yeh, Chien-Wen Lai, Wei-Liang Lin, Ya Hui Chang, Yung-Sung Yen, Ru-Gun Liu, Chin-Hsiang Lin, Yu-Tien Shen
  • Patent number: 11955519
    Abstract: A semiconductor device includes an epitaxial substrate. The epitaxial substrate includes a substrate. A strain relaxed layer covers and contacts the substrate. A III-V compound stacked layer covers and contacts the strain relaxed layer. The III-V compound stacked layer is a multilayer epitaxial structure formed by aluminum nitride, aluminum gallium nitride or a combination of aluminum nitride and aluminum gallium nitride.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Ming Hsu, Yu-Chi Wang, Yen-Hsing Chen, Tsung-Mu Yang, Yu-Ren Wang
  • Patent number: 11949012
    Abstract: A semiconductor device including: a first transistor which include a first gate stack on a substrate; and a second transistor which includes a second gate stack on the substrate, wherein the first gate stack includes a first ferroelectric material layer disposed on the substrate, a first work function layer disposed on the first ferroelectric material layer and a first upper gate electrode disposed on the first work function layer, wherein the second gate stack includes a second ferroelectric material layer disposed on the substrate, a second work function layer disposed on the second ferroelectric material layer and a second upper gate electrode disposed on the second work function layer, wherein the first work function layer includes the same material as the second work function layer, and wherein an effective work function of the first gate stack is different from an effective work function of the second gate stack.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: April 2, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong Ho Park, Wan Don Kim, Weon Hong Kim, Hyeon Jun Baek, Byoung Hoon Lee, Jeong Hyuk Yim, Sang Jin Hyun
  • Patent number: 11942337
    Abstract: The apparatus includes a support unit to support the substrate in a treatment space of a process chamber, a first fluid supply unit to supply a supercritical fluid having an organic solvent dissolved in the supercritical fluid, to the treatment space, a second fluid supply unit to supply the supercritical fluid having no organic solvent dissolved in the supercritical fluid, to the treatment space, an exhaust unit to exhaust the treatment space, a controller to control the first fluid supply unit, the second fluid supply unit, and the exhaust unit. The controller controls the first and second fluid supply units such that the supercritical fluid having no organic solvent dissolved in the supercritical fluid is supplied to the treatment space through the second fluid supply unit, after the supercritical fluid mixed with the organic solvent is supplied to the treatment space through the first fluid supply unit.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: March 26, 2024
    Assignee: SEMES CO., LTD.
    Inventors: Eui Sang Lim, Young Hun Lee, Jinwoo Jung, Miso Park, Byongwook Ahn, Yong Hee Lee
  • Patent number: 11942419
    Abstract: An integrated circuit structure includes a dielectric layer and an etch stop layer. The etch stop layer includes a first sub layer including a metal nitride over the first dielectric layer, and a second sub layer overlying or underlying the first sub layer. The second sub layer includes a metal compound comprising an element selected from carbon and oxygen, and is in contact with the first sub layer.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Tsung-Hsuan Hong, Chun Che Lin, Chih-Nan Wu
  • Patent number: 11942416
    Abstract: Embodiments disclosed herein include electronic systems with vias that include a horizontal and vertical portion in order to provide interconnects to stacked components, and methods of forming such systems. In an embodiment, an electronic system comprises a board, a package substrate electrically coupled to the board, and a die electrically coupled to the package substrate. In an embodiment the die comprises a stack of components, and a via adjacent to the stack of components, wherein the via comprises a vertical portion and a horizontal portion.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Hui Jae Yoo, Patrick Morrow, Anh Phan, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey, Rishabh Mehandru
  • Patent number: 11935915
    Abstract: Provided is a memcapacitor. The memcapacitor includes: a first electrode having a metal-doped perovskite composition; a second electrode disposed on the first electrode; and a dielectric thin film having a perovskite composition, disposed between the first electrode and the second electrode, and having a variable dielectric constant depending on a voltage between the first electrode and the second electrode.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: March 19, 2024
    Assignee: Gwangji Institute of Science and Technology
    Inventors: Sanghan Lee, Hyunji An, Jiwoong Yang
  • Patent number: 11935946
    Abstract: Structures for a silicon-controlled rectifier and methods of forming a structure for a silicon-controlled rectifier. The structure comprises a semiconductor substrate, a dielectric layer on the semiconductor substrate, and a first well and a second well in the semiconductor substrate beneath the dielectric layer. The first well has a first conductivity type, the second well has a second conductivity type opposite to the first conductivity type, and the second well adjoins the first well along a p-n junction. The structure further comprises a first terminal and a second terminal above the dielectric layer, a first connection extending through the dielectric layer from the first terminal to the first well, and a second connection extending through the dielectric layer from the second terminal to the second well.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: March 19, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Shesh Mani Pandey, Souvick Mitra, Anindya Nath
  • Patent number: 11937443
    Abstract: The present disclosure provides a display panel including a first substrate, pixels arranged on the first substrate and configured to define a display area, a second substrate facing the first substrate, an insulating layer on the first substrate and including an edge that is closer to the display area than an edge of the first substrate, a conductive layer on the insulating layer, and a sealing member between the first substrate and the second substrate and surrounding the display area.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: March 19, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seungjae Lee, Hyesoo Jee, Wongeun Lee, Hansoo Kim, Kyungmin Park
  • Patent number: 11929415
    Abstract: A device is disclosed. The device includes a source contact and a drain contact, a first dielectric between the source contact and the drain contact, a channel under the source contact and the drain contact, and a gate electrode below the channel, the gate electrode in an area under the first dielectric that does not laterally extend under the source contact or the drain contact. A second dielectric is above the gate electrode and underneath the channel.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 12, 2024
    Assignee: Intel Corporation
    Inventors: Chieh-Jen Ku, Pei-Hua Wang, Bernhard Sell, Travis W. Lajoie
  • Patent number: 11929430
    Abstract: A method includes providing a semiconductor body including a plurality of two-dimensional charge carrier gas channels, forming a gate fin by forming a pair of gate trenches in an upper surface of the semiconductor body, the pair of gate trenches exposing each one of two-dimensional charge carrier gas channels, providing source and drain contacts that are electrically connected to each one of the plurality of two-dimensional charge carrier gas channels, providing a gate structure that is configured to control a conductive connection between the source and drain contacts, wherein providing the gate structure includes forming a layer of doped type III-nitride semiconductor material that covers the gate fin and extends into the gate trenches, and forming a conductive gate electrode on top of the layer of doped type III-nitride semiconductor material.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: March 12, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Detzel, Gerhard Prechtl, Oliver Haeberlen
  • Patent number: 11923463
    Abstract: This disclosure provides a diode including a semiconductor region having at least one two-dimensional carrier channel of a first conductivity type. The diode also includes a plurality of sidewalls exposed in the semiconductor region defining at least one trench extending through the at least one two-dimensional carrier channel and a material of a second conductivity type, the second conductivity type being the other of the n-type and the p-type conductivity, disposed on the plurality of sidewalls and in contact with the at least one two-dimensional carrier channel. The diode also includes an anode material in contact with at least a portion of the semiconductor region and in contact with at least a portion of the material of the second conductivity type, and a cathode material in contact with the at least one two-dimensional carrier channel.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 5, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Yuhao Zhang, Ming Xiao
  • Patent number: 11923199
    Abstract: Aspects of the disclosure provide a method. The method includes forming a structure over a substrate, and forming a spacer layer on the structure, wherein the spacer layer has a recess. The method includes forming a mask layer over the spacer layer and in the recess, the mask layer including a first layer, a second layer and a third layer. The method includes patterning the third layer of the mask layer, and etching the first layer and the second layer of the mask layer to form an opening to expose the recess of the spacer layer, wherein the opening in the second layer has a first width; and. The method includes removing the second layer using a wet etchant, wherein the opening in the third layer has a second width, and the second with is greater than the first width.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Chia Chen, Wan Hsuan Hsu, Chia-Wei Wu, Neng-Jye Yang, Chun-Li Chou
  • Patent number: 11916138
    Abstract: A sacrificial substrate wafer is provided. A low resistivity etch stop layer is formed on or in the top surface of the wafer. The etch stop layer may be a highly doped, p+ type epitaxially grown layer, or an implanted p+ type boron layer, or an epitaxially grown p+ type SiGe layer. Various epitaxial layers, such as an n? type drift layer, and doped regions are then formed over the etch stop layer to form a vertical power device. The starting wafer is then removed by a combination of mechanical grinding/polishing to leave a thinner layer of the starting wafer. A chemical or plasma etch is then used to remove the remainder of the starting wafer, using the etch stop layer to automatically stop the etching. A bottom metal electrode is then formed on the etch stop layer. The etch stop layer injects hole carriers into the drift layer.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: February 27, 2024
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Paul M Moore, Vladimir Rodov, Richard A Blanchard
  • Patent number: 11882733
    Abstract: An organic semiconductor substrate includes a base, a first conductive pattern, a second conductive pattern, a first metal oxide pattern, a second metal oxide pattern, an organic flat pattern layer, a source, a drain, an organic semiconductor pattern, an organic gate insulating layer, and a gate. The first conductive pattern and the second conductive pattern are disposed on the base and separated from each other. The first metal oxide pattern and the second metal oxide pattern respectively cover and are electrically connected to the first conductive pattern and the second conductive pattern, respectively. A first portion of the organic flat pattern layer is disposed between the first metal oxide pattern and the second metal oxide pattern. A surface of the first metal oxide pattern has a first distance from the base. A surface of the first portion of the organic flat pattern layer has a second distance from the base. The second distance is less than or equal to the first distance.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: January 23, 2024
    Assignee: Au Optronics Corporation
    Inventors: Shuo-Yang Sun, Shih-Hua Hsu, Ching-Wen Chen, Ying-Hui Lai
  • Patent number: 11881522
    Abstract: A semiconductor device having favorable electrical characteristics is provided. A first oxide is formed over a substrate; a first insulator is formed over the first oxide; an opening reaching the first oxide is formed in the first insulator; a first oxide film is deposited in contact with the first oxide and the first insulator in the opening; a first insulating film is deposited over the first oxide film; microwave treatment is performed from above the first insulating film; heat treatment is performed on one or both of the first insulating film and the first oxide; a first conductive film is deposited over the first insulating film; and part of the first oxide film, part of the first insulating film, and part of the first conductive film are removed until a top surface of the first insulator is exposed, so that a second oxide, a second insulator, and a first conductor are formed.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: January 23, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Naoki Okuno, Yasuhiro Jinbo
  • Patent number: 11882704
    Abstract: Provided herein may be a semiconductor memory device and a method of manufacturing the same. The semiconductor memory device may include a stacked body including alternately stacked interlayer insulating layers and conductive patterns, and channel structures penetrating the stacked body. Each of the channel structures may include a channel layer vertically extending up to the height of the upper portion of at least one upper conductive pattern disposed uppermost, among the conductive patterns, a memory layer surrounding the channel layer and extending from the lower interlayer insulating layer to the height of the middle portion of the upper conductive pattern, and a doped semiconductor pattern disposed above the channel layer and the memory layer.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: January 23, 2024
    Assignee: SK hynix Inc.
    Inventor: Nam Jae Lee