Patents Examined by Kimberly Wyluda
  • Patent number: 11631891
    Abstract: The present invention relates to a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries. The a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries includes a compound with an argyrodite-type crystal structure represented by the following Formula 1: LiaPSbNcXd??[Formula 1] wherein 6?a?7, 3<b<6, 0<c?1, 0<d?2, and each X is the same or different halogen atom selected from the group consisting of chlorine (Cl), bromine (Br), and iodine (I).
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 18, 2023
    Assignees: Hyundai Motor Company, Kia Corporation, Industry-University Cooperation Foundation, Hanyang University
    Inventors: Ju Yeong Seong, Yong Jun Jang, Hong Seok Min, Sa Heum Kim, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Chan Hwi Park, Jin Oh Son
  • Patent number: 11626647
    Abstract: An energy storage device is provided with a case including a lid body in which a gas release valve is formed. The gas release valve includes a thin wall with a thickness smaller than a thickness of a portion adjacent to the gas release valve. The thin wall includes an intermediate portion and two lateral portions that are arranged at positions sandwiching the intermediate portion in a first direction. As viewed from a normal direction to the lid body, the intermediate portion is disposed at the middle position in the first direction of the lid body and is formed with a width, in a second direction orthogonal to the first direction, smaller than those of the two lateral portions.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: April 11, 2023
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventor: Yusuke Ogawa
  • Patent number: 11616273
    Abstract: The disclosure provides a method for manufacturing a separator, comprising the steps of: providing a nonporous precursor substrate; coating a heat-resistant slurry on a surface of the nonporous precursor substrate to form a heat-resistant coating layer, wherein the heat-resistant slurry comprises a binder and a plurality of inorganic particles; and stretching the nonporous precursor substrate with the heat-resistant coating layer formed thereon to generate a separator comprising a porous substrate and a heat-resistant layer; wherein the heat-resistant layer is disposed on the surface of the porous substrate in the range of 10% to 90% of the total surface area of the porous substrate.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: March 28, 2023
    Assignee: BenQ Materials Corporation
    Inventors: Wei-Ting Yeh, Yi-Fang Huang, Kai-Wei Cheng, Yu-Ruei Li, Wan-Ting Lo
  • Patent number: 11594718
    Abstract: In an aspect, a Li-ion cell may comprise a densified electrode exhibiting an areal capacity loading of more than about 4 mAh/cm2. For example, the densified electrode may a first electrode part arranged on a current collector and a second electrode part on top of the first electrode part, the second electrode part of the at least one densified electrode having a higher porosity than the first electrode part of the at least one densified electrode. In some designs, the densified electrode may be fabricated by densifying electrode layers via a pressure roller while maintaining a contacting part of the pressure roller at a temperature that is less than a temperature of the second electrode part. In some designs, the applied pressure is a time-varying (e.g., frequency modulated) pressure. In some designs, a drying time for a slurry to produce the densified electrode may range from around 1-120 seconds.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: February 28, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Gene Berdichevsky
  • Patent number: 11581523
    Abstract: In an embodiment, a Li-ion battery cell comprises an anode electrode with an electrode coating that (1) comprises Si-comprising active material particles, (2) exhibits an areal capacity loading in the range of about 3 mAh/cm2 to about 12 mAh/cm2, (3) exhibits a volumetric capacity in the range from about 600 mAh/cc to about 1800 mAh/cc in a charged state of the cell, (4) comprises conductive additive material particles, and (5) comprises a polymer binder that is configured to bind the Si-comprising active material particles and the conductive additive material particles together to stabilize the anode electrode against volume expansion during the one or more charge-discharge cycles of the battery cell while maintaining the electrical connection between the metal current collector and the Si-comprising active material particles.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: February 14, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Laura Gerber, Adam Kajdos, Justin Yen, Justin Doane, Jens Steiger
  • Patent number: 11575154
    Abstract: The present invention relates to a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries. The a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries includes a compound with an argyrodite-type crystal structure represented by the following Formula 1: LiaPSbNcXd??[Formula 1] wherein 6?a?7, 3?b?6, 0?c?1, 0?d?2, and each X is the same or different halogen atom selected from the group consisting of chlorine (Cl), bromine (Br), and iodine (I).
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 7, 2023
    Assignees: Hyundai Motor Company, Kia Corporation, IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventors: Ju Yeong Seong, Yong Jun Jang, Hong Seok Min, Sa Heum Kim, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Chan Hwi Park, Jin Oh Son
  • Patent number: 11575180
    Abstract: The disclosure provides a separator comprising a porous substrate and a heat-resistant layer disposed on a surface of the substrate. The heat-resistant layer comprises a binder and a plurality of inorganic particles, wherein the heat-resistant layer is disposed on the surface of the porous substrate in the range of 10% to 90% of the total surface area of the porous substrate.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: February 7, 2023
    Assignee: BenQ Materials Corporation
    Inventors: Wei-Ting Yeh, Yi-Fang Huang, Kai-Wei Cheng, Yu-Ruei Li, Wan-Ting Lo
  • Patent number: 11557785
    Abstract: An electrode assembly for a flow battery is disclosed comprising a porous electrode material, a frame surrounding the porous electrode material, at least a distributor tube embedded in the porous electrode material having an inlet for supplying electrolyte to the porous electrode material and at least another distributor tube embedded in the porous electrode material having an outlet for discharging electrolyte out of the porous material. The walls of the distributor tubes are preferably provided with holes or pores for allowing a uniform distribution of the electrolyte within the electrode material. The distributor tubes provide the required electrolyte flow path length within the electrode material to minimize shunt current flowing between the flow cells in the battery stack.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: January 17, 2023
    Assignee: INVINITY ENERGY SYSTEMS (CANADA) CORPORATION
    Inventors: Andrew Klassen, Ricky Blacker
  • Patent number: 11557815
    Abstract: A battery separator configured for reducing acid stratification for an enhanced flooded battery. The battery separator for the enhanced flooded battery is configured to minimize acid stratification. The battery separator is comprised of a microporous membrane and an absorptive mat. The absorptive mat includes a 3-hour wicking height greater than 15 cm. Wherein the absorptive mat of the battery separator is configured to minimize acid stratification of the enhanced flooded battery.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: January 17, 2023
    Assignee: MICROPOROUS, LLC
    Inventors: George Brilmyer, David Mihara
  • Patent number: 11557813
    Abstract: A system and method for separating battery components provides for the separation of batteries into their individual layers of anodes, cathodes, first polymer separator layers, and second polymer separator layers. A battery casing of a battery is cut to uncover a battery cell core, which is then washed to remove an electrolyte therefrom. An outer wrapping layer of the washed battery cell core is cut to form an open loose end, and the open loose end is engaged by first and second rollers to unroll a laminate therefrom. The laminate includes a cathode layer, an anode layer, a first polymer separator layer, and a second polymer separator layer. The laminate is then separated into the cathode layer, the anode layer, the first polymer separator layer, and the second polymer separator layer with the first roller, the second roller, a third roller, and a fourth roller. Each layer is then collected.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: January 17, 2023
    Assignee: ICREATE LIMITED
    Inventors: Lingda Xu, Ka Yip Fung, Ka Ming Ng
  • Patent number: 11552342
    Abstract: A battery module according to an exemplary embodiment of the present invention includes: a housing receiving a plurality of battery cells and including a bottom plate and a lateral plate; and a connection board disposed at one end or both ends of the housing, wherein the connection board is bonded to the lateral plate. The lateral plate may include a plurality of bus bar supporting members, at least some among the plurality of bus bar supporting members having a hooking protrusion protruded upward. The connection board may include a hooking member having a hooking groove opened downward. Thus, the hooking protrusion may be inserted into the hooking groove in a state in which the connection board is bonded to the lateral plate.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: January 10, 2023
    Inventors: Hyun Wook Jeon, Youngsun Yun
  • Patent number: 11527765
    Abstract: The invention relates to a bipolar separator (17) including a first (33) and a second (35) polar plate each comprising an inner surface and an outer surface in which at least one distribution channel (53, 55) is formed, the channels formed in the outer surfaces of the first and the second polar plate enabling fuel and oxidizer, respectively, to flow. The bipolar separator further includes an inner layer (29) provided to be sandwiched and compressed between the substantially planar inner surfaces of the first (33) and the second (35) polar plate, so as to form a laminated structure. The inner layer is formed by a perforated sheet comprising a group of through-grooves that form branchless channels, the ends of which lead, respectively, to two manifolds such that the coolant is able to flow between the first (33) and the second (35) polar plate.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: December 13, 2022
    Assignee: GREENGT SA
    Inventor: Jean-François Weber
  • Patent number: 11509010
    Abstract: Embodiments described herein generally relate to a battery pack assembly. The battery pack assembly includes a plurality of housing segments and a plurality of battery cells. The plurality of housing segments are coupled to one another. Each one of the plurality of housing segments includes a terminal receiving portion. The terminal receiving portion has a pair of end walls, a pair of side walls and a floor. A terminal connector is positioned within the terminal receiving portion. The terminal connector has a pair of openings. Each battery cell of the plurality of battery cells has a terminal side. A pair of terminals are positioned on the terminal side of each of the plurality of battery cells. Each one of the plurality of housing segments are configured to be rotated with respect to an adjacent housing segment between a use position and a maintenance position.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: November 22, 2022
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Jordan S. Guttrich, Brian Schneidewind, Douglas A. Siewert, Lincoln Morfin
  • Patent number: 11495784
    Abstract: A process for delineating a population of electrode structures in a web is disclosed. The web has a down-web direction, a cross-web direction, an electrochemically active layer, and an electrically conductive layer. The process includes laser machining the web in at least the cross-web direction to delineate members of the electrode structure population in the web without releasing the delineated members from the web and forming an alignment feature in the web that is adapted for locating each delineated member of the electrode structure population in the web.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: November 8, 2022
    Assignee: Enovix Operations Inc.
    Inventors: Harrold J. Rust, III, Murali Ramasubramanian, Ashok Lahiri, Bruno A. Valdes, Jeffrey Glenn Buck, Kim Lester Fortunati, Robert S. Busacca, John F. Varni, Joshua David Winans, Neal Sarswat, Gunther A. Koblmiller, Miles E. Beaven, Jeffery A. Moss, Michael E. Andres
  • Patent number: 11495839
    Abstract: An internal battery heating system includes an electrical conversion device electrically coupled to an electrochemical sub-cell or battery modules to form a heating circuit. The electrical conversion device alternately raises and lowers a voltage of the heating circuit to drive current between the heating circuit and the electrochemical sub-cell or battery modules. A controller commands the electrical conversion device to cyclically charge and discharge the electrochemical sub-cell or battery modules for internally heating the battery modules. Alternatively, a battery module may be electrically coupled to electrochemical sub-cells via pairs of switches to form a heating circuit. The pairs of switches are adapted for switching the heating circuit alternately between a parallel arrangement and a series arrangement to alternate charging and discharging of the battery module which results in internal heating of the battery module.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: November 8, 2022
    Assignee: Textron Innovations, Inc.
    Inventors: Charles Bernard Beuning, Vernon Weng-Yew Chang, Robby Dale Starr
  • Patent number: 11476543
    Abstract: An alkaline storage battery includes a plurality of foil electrodes that each have a metal foil and an active material layer. The active material layers are arranged in such a manner that adjacent two of the active material layers face each other. Separators which are each interposed between the adjacent two of the active material layers. The separators are each a nonwoven fabric including fibers as protruding portions. The active material layers have a large number of active material particles which adhere to each other, and spaces formed between the active material particles, as fitting portions. The fibers are engaged with the spaces while the fibers enter the spaces.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: October 18, 2022
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Satoshi Kono, Motoaki Okuda, Atsushi Minagata
  • Patent number: 11476491
    Abstract: An electrode pressure-bonding device that includes a feeding device that feeds a separator material in a strip shape in a feeding direction; a support stage under the separator material and configured to support an electrode on the separator material with the separator material interposed between the electrode and the support stage; and a pressure-bonding device that holds the separator material and the electrode together and pressure-bonds at least part of the separator material to the electrode.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: October 18, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Masayuki Sumita, Hideyasu Kamigawa, Takeshi Yamamoto
  • Patent number: 11462801
    Abstract: A battery module includes a cell stack having a plurality of battery cells; a module case configured to accommodate the cell stack; a pair of module covers configured to cover openings at both sides of the module case; and a ventilation unit installed through the module cover. The ventilation unit includes a one-way venting valve disposed at a center of a perforation hole formed through the module cover; a first hole sealing portion attached onto an inner wall of the perforation hole; and a second hole sealing portion attached onto an outer circumference of the one-way venting valve.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: October 4, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventor: Jin-Kyu Lee
  • Patent number: 11450878
    Abstract: A method for manufacturing a cylindrical three-electrode cell, according to the present invention, can comprise the steps of: preparing a cylindrical can in which an electrode assembly is accommodated; manufacturing a reference electrode assembly by coupling lithium metal to one side of a reference electrode lead; separating a cap assembly coupled to the upper end of the cylindrical can; inserting the reference electrode assembly such that the lithium metal is inserted in the electrode assembly and the one side of the reference electrode lead is withdrawn to the outside of the cylindrical can; coupling the separated cap assembly to the opened upper end of the cylindrical can; mounting a holder so that same encompasses the side of the cap assembly and the end part of the side of the cylindrical can; and injecting an adhesive into the holder, and then curing same.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: September 20, 2022
    Assignee: LG Energy Solution, Ltd.
    Inventor: I Reh Im
  • Patent number: 11444356
    Abstract: A sealing plate including an explosion-proof valve whose opening pressure can be set easily, and whose groove will not be not ruptured by a repeated stress before reaching an opening pressure. The explosion-proof valve including a thin plate portion thinner than a plate; a valve portion formed by partially projecting the thin plate portion in a thickness direction to enhance a bending rigidity; and a groove drawn as a boundary between the valve portion and the thin plate portion to serves as a score line. A rupturable portion that is ruptured after the groove is ruptured is formed between a straight line and a folding line. The valve portion is bent along the folding line to open the explosion-proof valve when the rupturable portion is ruptured after the groove is ruptured.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: September 13, 2022
    Assignee: DAIWA CAN COMPANY
    Inventors: Masahiro Shiotani, Taichi Horie, Yusuke Yamawaki