Patents Examined by Lawrence Tynes, Jr.
  • Patent number: 9613716
    Abstract: A semiconductor system may include a first semiconductor device including a first pad group. The semiconductor system may include a second semiconductor device including a second pad group which is configured for input and output of signals from and to a third semiconductor device. The second semiconductor device may include a selective transfer unit configured to electrically couple the third pad group to the first pad group or to an interface unit electrically coupled to the first pad group, in response to a test mode enable signal.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: April 4, 2017
    Assignee: SK HYNIX INC.
    Inventors: Min Chang Kim, Woo Yeol Shin, Noh Hyup Kwak
  • Patent number: 9607886
    Abstract: A method for forming conductive lines comprises forming a hardmask on an insulator layer, a planarizing layer on the hardmask, and a hardmask on the planarizing layer, removing exposed portions of a layer of sacrificial mandrel material to form first and second sacrificial mandrels on the hardmask, and depositing a layer of spacer material in the gap, and over exposed portions of the first and second sacrificial mandrels and the hardmask. Portions of the layer of spacer material are removed to expose the first and second sacrificial mandrels. A filler material is deposited between the first and second sacrificial mandrels. A portion of the filler material is removed to expose the first and second sacrificial mandrels. Portions of the layer of spacer material are removed to expose portions of the hardmask. A trench is formed in the insulator layer, and the trench is filled with a conductive material.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 28, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 9589960
    Abstract: A method for forming a semiconductor structure includes forming a trench in a semiconductor substrate; forming a first dielectric layer over a bottom surface and sidewalls of the trench; forming a second dielectric layer over the first dielectric layer; forming a sacrificial layer that fills the trench, over the second dielectric layer; etching the sacrificial layer and the second dielectric layer, and forming a sacrificial filler and a dielectric liner that are positioned in the trench; removing the sacrificial filler; forming a conductive layer that fills the trench, over the dielectric liner and the first dielectric layer; and etching the conductive layer to be buried in the trench.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 7, 2017
    Assignee: SK Hynix Inc.
    Inventor: Kyung-Kyu Min
  • Patent number: 9589974
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes: an interlayer insulating film; an element separating region separating a semiconductor layer in the memory cell region; a gate electrode provided on one of plurality of semiconductor regions in the memory cell region; a contact electrode having a sidewall in contact with the interlayer insulating film and electrically connected to the one of the plurality of semiconductor regions in the memory cell region; a first wiring layer connected to an upper end of the contact electrode in the memory cell region; and a second wiring layer in a third direction, having an upper end higher than the upper end of the contact electrode, having a lower end lower than the upper end of the contact electrode, and having a sidewall at least partly in contact with the interlayer insulating film in the peripheral region.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: March 7, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Iijima, Yoshiaki Himeno, Takamasa Usui
  • Patent number: 9577036
    Abstract: A semiconductor device includes a semiconductor device and a semiconductor fin on the semiconductor substrate, in which the semiconductor fin has a fin isolation structure at a common boundary that is shared by the two cells. The fin isolation structure has an air gap extending from a top of the semiconductor fin to a stop layer on the semiconductor substrate. The air gap divides the semiconductor fin into two portions of the semiconductor fin. The fin isolation structure includes a dielectric cap layer capping a top of the air gap.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Cheng Chang, Chih-Han Lin
  • Patent number: 9577204
    Abstract: A field effect transistor includes a substrate and a gate dielectric formed on the substrate. A channel material is formed on the dielectric layer. The channel material includes carbon nanotubes. A patterned resist layer has openings formed therein. Metal contacts are formed on the channel material in the openings in the patterned resist layer and over portions of the patterned resist layer to protect sidewalls of the metal contacts to prevent degradation of the metal contacts.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shu-Jen Han, Jianshi Tang
  • Patent number: 9576947
    Abstract: In a semiconductor integrated circuit device, a plurality of electrode pads for external connection are arranged in a zigzag pattern. Some electrode pads of the electrode pads of the plurality of I/O cells which are closer to a side of the semiconductor chip, each have an end portion closer to the side of the semiconductor chip, the end portion being set at the same position as that of an end portion of the corresponding I/O cell. A power source-side protective circuit and a ground-side protective circuit against discharge of static electricity are provided with the power source-side protective circuit being closer to the scribe region. A distance between a center position of one of the electrode pads and the ground-side protective circuit of the corresponding I/O cell and a distance between a center position of the other one electrode pad and the ground-side protective circuit of the corresponding I/O cell are both short and are substantially equal between each I/O cell.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: February 21, 2017
    Assignee: SOCIONEXT INC.
    Inventors: Koichi Taniguchi, Masato Maede
  • Patent number: 9570570
    Abstract: The present disclosure relates to a silicon carbide (SiC) field effect device that has a gate assembly formed in a trench. The gate assembly includes a gate dielectric that is an dielectric layer, which is deposited along the inside surface of the trench and a gate dielectric formed over the gate dielectric. The trench extends into the body of the device from a top surface and has a bottom and side walls that extend from the top surface of the body to the bottom of the trench. The thickness of the dielectric layer on the bottom of the trench is approximately equal to or greater than the thickness of the dielectric layer on the side walls of the trench.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: February 14, 2017
    Assignee: Cree, Inc.
    Inventors: Daniel Jenner Lichtenwalner, Lin Cheng, Anant Kumar Agarwal, John Williams Palmour
  • Patent number: 9564520
    Abstract: A method of forming a semiconductor device is disclosed. A sacrificial oxide layer is formed on a substrate having first and second areas. Using a photoresist mask exposing the first area and covering the second area as a mask layer, by a wet etching process, the sacrificial oxide layer in the first area and an edge portion of the sacrificial oxide layer in the second area are simultaneously removed, wherein the sacrificial oxide layer remained in the second area has a sidewall with a slope smaller than 40 degrees. An oxide-nitride-oxide (ONO) layer is formed over the first and second areas. The sacrificial oxide layer and the ONO layer formed thereon in the second area are removed, so that the ONO layer remained in the first area forms a first gate insulating layer in the first area. A second gate insulating layer is formed in the second area.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: February 7, 2017
    Assignee: United Microelectronics Corp.
    Inventor: Tzu-Ping Chen
  • Patent number: 9553206
    Abstract: The present invention provides an EEPROM core structure embedded into BCD process and forming method thereof. The EEPROM core structure embedded into BCD process comprises a selection transistor and a storage transistor connected in series, wherein the selection transistor is an LDNMOS transistor. The present invention may embed the procedure for forming the EEPROM core structure into the BCD process, which is favorable to reduce the complexity of the process.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: January 24, 2017
    Assignee: ADVANCED SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Jianhua Liu
  • Patent number: 9548297
    Abstract: Provided are a semiconductor device and a method of manufacturing the same. The semiconductor device includes a substrate and a PIP capacitor located. The PIP capacitor includes a first polysilicon layer, a metallic silicide layer, a protective layer, a dielectric layer, and a second polysilicon layer, which have a lower conductive plate pattern and are successively arranged. The method includes: providing a substrate; successively forming a first polysilicon layer, a metallic silicide, and a protective layer on the substrate; transferring a lower conductive plate pattern into the first polysilicon layer, the metallic silicide layer, and the protective layer, thus forming the first polysilicon layer, the metallic silicide layer, and the protective layer having the lower conductive plate pattern; successively forming a dielectric layer and a second polysilicon layer having a lower conductive plate pattern on the protective layer. The capacitance and reliability of the PIP capacitor are improved.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: January 17, 2017
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Liangwei Mou, Zhaoxing Huang, Xuelei Chen, Li Wang, Zhewei Wang
  • Patent number: 9543451
    Abstract: The present invention discloses a high voltage JFET. The high voltage JFET includes a second conductivity type drift region located on the first conductivity type epitaxial layer; a second conductivity type drain heavily doped region located in the second conductivity type drift region; a drain terminal oxygen region located on the second conductivity type drift region and at a side of the second conductivity type drain heavily doped region; a first conductivity type well region located at a side of the second conductivity type drift region; a second conductivity type source heavily doped region and a first conductivity type gate heavily doped region located on the first conductivity type well region, and a gate source terminal oxygen region; a second conductivity type channel layer located between the second conductivity type source heavily doped region and the second conductivity type drift region; a dielectric layer and a field electrode plate located on the second conductivity type channel layer.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: January 10, 2017
    Assignee: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Guangtao Han
  • Patent number: 9543149
    Abstract: An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain end diffused link between the buried drift region and the drain contact, and a concurrently formed channel end diffused link between the buried drift region and the channel, where the channel end diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain end diffused link.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: January 10, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Philip Leland Hower, Sameer Pendharkar, Marie Denison
  • Patent number: 9530885
    Abstract: In some embodiments, a normally on high voltage switch device (“normally on switch device”) incorporates a trench gate terminal and buried doped gate region. In other embodiments, a surface gate controlled normally on high voltage switch device is formed with trench structures and incorporates a surface channel controlled by a surface gate electrode. The surface gate controlled normally on switch device may further incorporate a trench gate electrode and a buried doped gate region to deplete the conducting channel to aid in the turning off of the normally on switch device. The normally on switch devices thus constructed can be readily integrated with MOSFET devices and formed using existing high voltage MOSFET fabrication technologies.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: December 27, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Hamza Yilmaz, Daniel Calafut, Karthik Padmanabhan
  • Patent number: 9508614
    Abstract: A method for aligning a chip onto a substrate is disclosed. The method includes, depositing a ferrofluid, onto a substrate that has one or more pads that electrically couple to a semiconductor layer. The method can include a chip with solder balls electrically coupled to the logic elements of the chip, which can be placed onto the deposited ferrofluid, where the chip is supported on the ferrofluid, in a substantially coplanar orientation to the substrate. The method can include determining if the chip is misaligned from a desired location on the substrate. The method can include adjusting the current location of the chip in response to determining that the solder balls of the chip are misaligned from the desired location on the pads of the substrate, until the chip is aligned in the desired location.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Patent number: 9508790
    Abstract: A method of forming a semiconductor device includes forming an opening having a sidewall in a substrate and forming a first epitaxial layer in the opening. The first epitaxial layer is formed in a first portion of the sidewall without growing in a second portion of the sidewall. A second epitaxial layer is formed in the opening after forming the first epitaxial layer. The second epitaxial layer is formed in the second portion of the sidewall. The first epitaxial layer is removed after forming the second epitaxial layer.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: November 29, 2016
    Assignee: Infineon Technologies AG
    Inventors: Thomas Popp, Stefan Pompl, Rudolf Berger
  • Patent number: 9502794
    Abstract: A terminal block assembly with one or more removable dividers. The dividers include a tenon that can be inserted into a groove in one or more blocks. The dividers can be retained by a fastening member, such as a clip, placed at an open end of the groove.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: November 22, 2016
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Robert C. Cooney
  • Patent number: 9502400
    Abstract: A semiconductor substrate has at least two active regions, each having at least one active device that includes a gate electrode layer, and a shallow trench isolation (STI) region between the active regions. A decoupling capacitor comprises first and second dummy conductive patterns formed in the same gate electrode layer over the STI region. The first and second dummy conductive regions are unconnected to any of the at least one active device. The first dummy conductive pattern is connected to a source of a first potential. The second dummy conductive pattern is connected to a source of a second potential. A dielectric material is provided between the first and second dummy conductive patterns.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chung-Hui Chen
  • Patent number: 9499392
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: November 22, 2016
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 9484443
    Abstract: A semiconductor device includes a semiconductor layer opposing to a bottom surface and a side surface of a gate electrode. An insulation film is provided between the bottom surface of the gate electrode and the semiconductor layer and between the side surface of the gate electrode and the semiconductor layer. A first conduction-type drain layer is provided in the semiconductor layer on a side of an end part of one of the bottom surface and the side surface of the gate electrode. A second conduction-type source layer is provided in the semiconductor layer opposing to the other one of the bottom surface and the side surface of the gate electrode. A second conduction-type extension layer is provided in the semiconductor layer opposing to a corner part between the side surface and the bottom surface of the gate electrode and has a lower impurity concentration than that of the source layer.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: November 1, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiyuki Kondo, Masakazu Goto