Patents Examined by Leo B. Tentoni
  • Patent number: 11286286
    Abstract: The present invention relates to a method for manufacturing a protein fiber, including an extension and contraction step of contracting or extending a protein raw fiber containing a protein by bringing the protein raw fiber into contact with a liquid or vapor; and a drying step of drying the protein raw fiber that has undergone the extension and contraction step while adjusting a length of the protein raw fiber to an arbitrary length.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: March 29, 2022
    Assignees: Spiber Inc., Kojima Industries Corporation
    Inventors: Takashi Morinaga, Takehisa Maekawa
  • Patent number: 11286579
    Abstract: A method of producing a fiber is provided, the method including extruding, from a spinneret, a spinning dope solution containing a fiber-forming polymer dissolved in a solvent, once allowing the solution to run in air, and then guiding the solution into the liquid of a coagulation bath to allow coagulation, wherein a gas-phase portion formed in a vertically downward direction from an extrusion surface of the spinneret to the liquid surface of the coagulation bath has a unidirectional air flow, and has an air flow rate per unit time (Af) which satisfies, in relation to the amount of the solvent in the spinning dope solution per unit time (As) in the gas-phase-portion volume (Vh), the relational expression 0.0008 m3?Af/(As/Vh)?0.0015 m3.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: March 29, 2022
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Takuya Nagasaka, Keiichi Ishio, Fumiya Yano, Naoyuki Furukawa, Seiji Nagano, Yuma Matsubara
  • Patent number: 11286580
    Abstract: The present invention relates to a method for producing an acrylonitrile-based fiber, the method including: providing a polymer solution including an acrylonitrile-based copolymer containing a carboxylic acid group; mixing 100 parts by weight of the polymer solution with 1 to 6 parts by weight of a hydrophilization solution containing an organic solvent and ammonia water in a weight ratio of 95:5 to 60:40 to prepare a spinning stock solution; and spinning the spinning stock solution. The method controls the viscosity of the spinning stock solution to improve the stretchability and strength of the acrylonitrile-based fiber, and suppresses the occurrence of gelation.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 29, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Sang Jin Kim, Chang Hong Bak, Hye Jin Han, Ki Yeon Jo, Jeong Hun Cho, Joon Hee Cho
  • Patent number: 11286581
    Abstract: A drawing method is provided which enables a pressurized steam drawing of an acrylonitrile-based fiber bundle used as the precursor fiber of the carbon fiber bundle. In particular, a drawing method is provided which realizes a high processability when this treatment is conducted at a high draw ratio and high speed. This invention is a method for producing an acrylonitrile-based fiber bundle which includes the steps of spinning a spinning solution containing an acrylonitrile-based copolymer, and subjecting the fiber bundle to a pressurized steam drawing in a pressurized steam drawing apparatus (A) having at least two zones which are a preheating zone on the fiber bundle inlet side and a heating zone on the fiber bundle exit side, the two zones being separated by a seal member. The preheating zone is in a pressurized steam atmosphere at 0.05 to 0.35 MPa, the heating zone is in a pressurized steam atmosphere at 0.45 to 0.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 29, 2022
    Assignee: Toray Industries, Inc.
    Inventors: Hiroyoshi Ikuta, Takeya Ohashi, Tomoki Tamura
  • Patent number: 11279071
    Abstract: In particular embodiments, a process for producing bulked continuous carpet filament from recycled polymer utilizes two vacuum pumps (140A, 140B) in combination with a single extruder (100). In various embodiments, the dual vacuum arrangement (e.g., at least two vacuum pumps (140A, 140B)) operably coupled to the single extruder (e.g., MRS extruder (100)) may be configured to remove one or more impurities from recycled polymer as the recycled polymer passes through the extruder.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: March 22, 2022
    Assignee: Aladdin Manufacturing Corporation
    Inventor: Thomas R. Clark
  • Patent number: 11279084
    Abstract: A method for providing high-speed three dimensional (3D) printing is provided. The method includes producing at least one three dimensional (3D) printed part. Producing the 3D part includes continuously constructing to extend outwardly a diameter of a rotating cylindrical core via continuous deposition of a layer, and defining a first pattern in the continuously deposited layer corresponding to a cross-section of the at least one 3D printed part.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: March 22, 2022
    Assignees: Xerox Corporation, Palo Alto Research Center Incorporated
    Inventors: Ashish V. Pattekar, Warren Jackson, Anne Plochowietz, Jengping Lu, Jamie Kalb, Christopher L. Chua, Carolyn Moorlag, Eugene Beh
  • Patent number: 11274380
    Abstract: Disclosed herein are customizable kits of parts for the fabrication of polymer fibers. In some embodiments, the kits provided herein comprise a scaffold comprising first and second opposite surfaces and one or more pores extending through the first and second surfaces, wherein each pore comprises a first channel and a first conjunction interface. The kits additionally comprise a plurality of nozzles, wherein each nozzle comprises a second channel and a second conjunction interface, and wherein the second interface can be removably and stably coupled to the first conjunction interface of each pore while allowing a fluid through the first channel and the second channel. The kits further comprise a plurality of closure structures, wherein each closure structure comprises a third conjunction interface, and wherein the third interface can be removably and stably coupled to the first conjunction interface of each pore to seal the pore.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: March 15, 2022
    Assignee: 4C Air, Inc.
    Inventors: Qiqi Wang, Lei Liao, Baoqiong Guan
  • Patent number: 11267167
    Abstract: A molded pot is provided with imperfections manufactured by manufacturing mold tooling with imperfections by obtaining a handmade pot. The handmade pot is scanned to obtain geometric data. The geometric data is converted to mold tooling geometric data. Mold tooling is manufactured from the mold tooling geometric data. The handmade pot is obtained with imperfections. The handmade pot is scanned to obtain the geometric data of the handmade pot with the imperfections. The geometric data is converted to mold tooling geometric data with the imperfections. The mold tooling is manufactured with imperfections. A pot is molded with imperfections from the mold tooling.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 8, 2022
    Assignee: ATT Southern, Inc.
    Inventors: Chun Wai Hung, Brian Leahy
  • Patent number: 11261545
    Abstract: A carbon fiber production method includes a carbon fiber production step including an oxidation step and a carbonization step; and an exhaust gas processing step including a heat exchange step; an external air mixing step; and a mixed external air supplying step in which the mixed external air is supplied to at least one step that uses heated gas in the steps in the carbon fiber production step; and among the exhaust gases, a high heating value exhaust gas having a heating value of 250 kcal/Nm3 or higher is supplied to an inlet side of an exhaust gas combustion apparatus and a low heating value exhaust gas having a heating value lower than 150 kcal/Nm3 is supplied to an outlet side of the exhaust gas combustion apparatus, respectively.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: March 1, 2022
    Assignee: Toray Industries, Inc.
    Inventors: Kosuke Taki, Hiroomi Ueda, Hiroyuki Konishi
  • Patent number: 11260608
    Abstract: A method and apparatus for constructing a tubular assembly 40 comprising an inner portion (24) and a further portion (23) surrounding the inner portion. The inner portion (24) comprises reinforcement (37) and the further portion (23) being formed from a strip (50) of material comprising two opposed longitudinal marginal side portions (53). The apparatus comprises an assembly station (220) comprising a wall (253). The apparatus comprises means for advancing the inner portion (21) along a first path (231) extending passed the wall (253), and means for advancing the strip (50) along a second path (232) and causing the strip to encircle the wall (253) and thereby wrap about and surround the inner portion (21). The apparatus further comprises means (321) for introducing resinous binder into the reinforcement (37) as the strip (50) is being wrapped about the inner portion (21).
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: March 1, 2022
    Assignee: Long Pipes Limited
    Inventors: Neil Deryck Bray Graham, Arthur Derrick Bray Graham
  • Patent number: 11254054
    Abstract: Printing systems, compositions suitable for the printing system, use of the compositions, methods for additive manufacturing, and exposure systems, all allowing for improved 3D manufacturing of products, include the exposure of layers of photopolymer material by two different wavelengths coming from LEDs.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: February 22, 2022
    Assignee: NTS Systems Development B.V.
    Inventors: Laurens van de Laar, Ranjana Chhaganbhai Baker
  • Patent number: 11255026
    Abstract: A method for forming an ultra-high temperature (UHT) composite structure includes dispensing a polymeric precursor with a spinneret biased at a first DC voltage; forming a plurality of nanofibers from the polymeric precursor; receiving the plurality of nanofibers with a collector biased at a second DC voltage different than the first DC voltage; and changing a direction of movement of the plurality of nanofibers between the spinneret and the collector with a plurality of magnets having a magnetic field by adjusting the magnetic field.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: February 22, 2022
    Assignee: Raytheon Technologies Corporation
    Inventor: Bart A. van Hassel
  • Patent number: 11248323
    Abstract: A nonwoven recyclable fabric and associated methods are provided. The fabric is formed from 100% polyester, and may also include surface coatings such as hydrophilic coatings to promote heat transfer as well moisture vapor transmission rates and/or a silicone coating to promote fabric smoothness and reduce abrasiveness of the fabric.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: February 15, 2022
    Assignee: Purlin, LLC
    Inventors: Richard Francis Ferrell, James Michael Posa, Joseph D. Wahlquist
  • Patent number: 11248314
    Abstract: A process is disclosed herein comprising the steps: a) contacting an esterifying agent and a polysaccharide in the presence of a first solvent and suitable reaction conditions for a reaction time sufficient to form a product comprising a polysaccharide ester composition, the polysaccharide ester composition comprising a polysaccharide ester having a degree of substitution of about 0.001 to about 3; wherein the esterifying agent comprises an acyl halide, a phosphoryl halide, a carboxylic acid anhydride, a haloformic acid ester, a carbonic acid ester, or a vinyl ester; and the ratio of esterifying agent to polysaccharide is in the range of about 0.001:1 to about 3:1 on a molar equivalent basis; b) combining the product obtained in step a) with polyacrylonitrile; and c) spinning fibers.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: February 15, 2022
    Assignee: NUTRITION & BIOSCIENCES USA 4, INC.
    Inventors: Douglas J. Adelman, Natnael Behabtu, Alicia C. Briegel, Ross S. Johnson, Christian Peter Lenges, Kathleen Opper, Andreas Jürgen Wego, Christian Herbert
  • Patent number: 11242622
    Abstract: A method of manufacturing bulked continuous carpet filament from polytrimethylene terephthalate (PTT) with polyethylene terephthalate (PET) comprises: (1) splitting the PTT stream extruded from the primary extruder into a number of polymer streams, each of the plurality of polymer streams having an associated spinning machine; (2) adding a colorant to each split polymer stream; (3) adding PET to the extruded polymer stream downstream of the primary extruder; (4) using one or more static mixing assemblies for each split polymer stream to substantially uniformly mix each split polymer stream and its respective colorant and PET; and (5) spinning each polymer stream with its substantially uniformly mixed colorant and any additives into BCF using the respective spinning machine.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: February 8, 2022
    Assignee: Aladdin Manufacturing Corporation
    Inventor: Thomas R. Clark
  • Patent number: 11242623
    Abstract: The invention relates to a method for thermally stabilizing melt-spun PAN precursors. For this purpose, the invention provides a continuous method for producing a thermally stabilized multifilament thread made of a meltable copolymer of polyacrylonitrile (PAN), wherein a pre-stabilized multifilament thread is thermally stabilized and in the process at least temporarily stretched. The invention additionally relates to a thermally stabilized multifilament thread which can be obtained according to a corresponding method and to a carbon fiber which is made of the correspondingly thermally stabilized multifilament thread.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: February 8, 2022
    Assignee: Fraunhofer-Gesellschaft zur förderung der angewandten Forschung e.V.
    Inventors: Jens Erdmann, Johannes Ganster
  • Patent number: 11236448
    Abstract: A method of creating a soft and lofty continuous fiber nonwoven web is provided. The method includes providing a first molten polymer and a second, different molten polymer to a spinneret defining a plurality of orifices and flowing a fluid intermediate the spinneret and a moving porous member. The method includes using the fluid to draw the first and second molten polymer components, in a direction toward the moving porous member, through at least some of the plurality of orifices to form a plurality of individual continuous fiber strands. The method includes depositing the continuous fiber strands onto the moving porous member at a first location to produce an intermediate continuous fiber nonwoven web, and intermittently varying a vacuum force applied to the moving porous member and to the intermediate web downstream of the first location and without the addition of more continuous fibers and without any heat applied.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: February 1, 2022
    Assignee: The Procter & Gamble Company
    Inventors: Jonathan P. Brennan, Jeffrey A. Auer, David Wesley Monebrake, Andreas J. Dreher, Antonius Lambertus DeBeer
  • Patent number: 11220574
    Abstract: A method of fabricating a plurality of polyethylene terephthalate (PET) nanofibers comprising enhanced thermal and structural properties is provided. The method includes providing a spinning apparatus comprising a plurality of orifices for extruding a polymeric resin material therethrough. At least a portion of the plurality of orifices have at least one feature of a radial arrangement, a recessed portion, and a distinctive size in relation to a remaining portion of the plurality of orifices. Extruding the polymeric resin material through the plurality of orifices by way of the spinning apparatus produces the plurality of PET nanofibers having enhanced thermal and structural properties.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: January 11, 2022
    Assignee: Niagara Bottling, LLC
    Inventor: Jay Clarke Hanan
  • Patent number: 11214963
    Abstract: A precast concrete panel and method for forming the panel are disclosed. A method of forming the panel to be used as a floor, wall, or roof structure includes positioning one or more forming members within a casting bed having a plurality of upright surfaces defining a generally rectangular interior area, the one or more forming members comprising an insulating material extending along a length dimension of the one or more forming members to define a plurality of rectangular-shaped channels in a parallel and spaced-apart relationship, placing uncured concrete within the casting bed and allowing the concrete to cover the one or more forming members and substantially fill the channels, and allowing the concrete to cure.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: January 4, 2022
    Assignee: Innovative Design Solutions LLC
    Inventors: Jeff VanHoose, Don Atkins
  • Patent number: 11207510
    Abstract: An applicator is disclosed for applying a treatment solution to a treatment site of a patient. The applicator can include an applicator housing comprising a treatment solution reservoir. A cartridge can be removably disposed in the housing. The cartridge when arranged in the housing can be in fluid communication with the treatment solution reservoir. The cartridge can include an electrostatic module for electrostatically charging the treatment solution in the treatment solution reservoir; and a nozzle for applying the treatment solution.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: December 28, 2021
    Assignee: Octet Medical, Inc.
    Inventor: Clifford A. Wright