Patents Examined by Liesl C Baumann
  • Patent number: 8829333
    Abstract: A highly reliable solar cell module and method for manufacturing same are disclosed. The solar cell module is provided with first and second solar cell elements, each of which has a semiconductor substrate and an output taking out electrode; a circuit film which electrically connects together the first solar cell element and the second solar cell element; and a sealing material disposed between the circuit film and the second surface of the first and the second solar cell elements. The sealing material has a through hole, and the circuit film has: a base sheet having a protruding section which protrudes toward the second surface of the solar cell element; and a wiring conductor which electrically connects the output taking out electrode of the first solar cell element and the output taking out electrode of the second solar cell element.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 9, 2014
    Assignee: KYOCERA Corporation
    Inventors: Mitsuo Yamashita, Takeshi Kyouda
  • Patent number: 8829342
    Abstract: A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: September 9, 2014
    Assignee: The University of Toledo
    Inventors: Alvin D. Compaan, Victor V. Plotnikov
  • Patent number: 8829339
    Abstract: A method for forming a photovoltaic device includes patterning a dielectric layer on a substrate to form a patterned dielectric having local spacings between shapes and remote spacings between groups of shapes, and depositing a doped epitaxial layer over the patterned dielectric such that selective crystalline growth occurs in portions of the epitaxial layer in contact with the substrate and noncrystalline growth occurs in portions of the epitaxial layer in contact with the patterned dielectric. First metal contacts are formed over the local spacings of the patterned dielectric, and second metal contacts are formed over the remote spacings. Exposed portions of the noncrystalline growth are etched using the first and second metal contacts as an etch mask to form alternating interdigitated emitter and back contact stacks.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8809675
    Abstract: A solar cell system includes a number of P-N junction cells, a number of inner electrodes, a first collecting electrode, a second collecting electrode and a reflector. The number of the P-N junction cells is M. M is equal to or greater than 2. The M P-N junction cells are arranged from a first P-N junction cell to an Mth P-N junction cell along the straight line. The P-N junction cells are arranged in series along a straight line. The number of the inner electrodes is M?1. At least one inner electrode includes a carbon nanotube array. A photoreceptive surface is parallel to the straight line. A reflector is located on an emitting surface opposite to the photoreceptive surface.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: August 19, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 8710358
    Abstract: Example embodiments relate to a solar cell configured to scatter incident light to be penetrated so as to increase a light progress path and includes a polymer-dispersed liquid crystal (PDLC) layer on at least one of a first and a second electrodes.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics, Co. Ltd.
    Inventors: Gae-hwang Lee, Kyu-young Hwang, Jae-eun Jung
  • Patent number: 8692109
    Abstract: The present invention provides a solar cell module including: a light transmitting plate having light transmittance; solar cells having bonding pads and conductive bumps bonded to the bonding pads; an adhesive film disposed between the light transmitting plate and the solar cells to bond the light transmitting plate and the solar cells; and a conductive pad disposed by being inserted in the adhesive film and surrounding and electrically connecting the conductive bumps of the adjacent solar cells.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: April 8, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jin Mun Ryu, In Taek Song, Tae Young Kim, Seung Yun Oh
  • Patent number: 8686280
    Abstract: A see-through type solar battery module includes optically transparent first and second substrates and a plurality of annular clusters. Each cluster includes: a plurality of spherical solar cells; a conductive layer to which first electrodes of the plurality of solar cells are electrically connected in parallel; a conductive member to which second electrodes of the plurality of solar cells are electrically connected in parallel; a bypass diode connected to the conductive layer and the conductive member; and a conductive connection member that electrically connects the conductive layer to conductive member of the cluster that is adjacent in a predetermined direction. By providing the clusters in a snowflake configuration, or in a single rectilinear pattern, the scope is enlarged for selecting the ratio between sunlight transmission ratio and electrical generation capability, so that enhanced freedom of design for use as a window material is obtained.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: April 1, 2014
    Assignee: Kyosemi Corporation
    Inventor: Josuke Nakata
  • Patent number: 8664509
    Abstract: A thermoelectric apparatus includes a first and a second assemblies, at least a first and a second heat conductors. The first assembly includes a first and a second substrates, and several first thermoelectric material sets disposed between the first and second substrates. The first substrate has at least a first through hole. The second assembly includes a third and a fourth substrates, and several second thermoelectric material sets disposed between the third and fourth substrates. The fourth substrate has at least a second through hole. Each of the first and second thermoelectric material sets has a p-type and an n-type thermoelectric element. The first and second heat conductors respectively penetrate the first and second through holes. Two ends of the first heat conductor respectively connect the second and fourth substrates, while two ends of the second heat conductor respectively connect the first and third substrates.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 4, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Kai Liu, Ming-Ji Dai, Suh-Yun Feng, Li-Ling Liao
  • Patent number: 8586860
    Abstract: A module includes optically transparent first and second substrates and a plurality of clusters, with each cluster including: a plurality of rod type solar cells; a conductive layer to which first electrodes of the plurality of solar cells are electrically connected in parallel; a conductive member to which second electrodes of the plurality of solar cells are electrically connected in parallel; a bypass diodes connected to the conductive layer and the conductive member; and a conductive connection member that electrically connects the conductive layer to conductive member of the cluster that is adjacent in a predetermined direction. By providing the plurality of clusters arranged in a hexagonal or rectilinear configuration, it is possible to enlarge the permitted scope for selection of the ratio between sunlight transmission ratio and electrical generation capability, so that it is possible to obtain enhanced freedom of design for use as a window material.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: November 19, 2013
    Assignee: Kyosemi Corporation
    Inventor: Josuke Nakata
  • Patent number: 8569615
    Abstract: Provided are solar cells and methods of forming the same. The solar cell includes an anti-reflection layer on a substrate, a first electrode on the anti-reflection layer, a photo-electro conversion layer on the first electrode, and a second electrode on the photo-electro conversion layer.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mi Hee Jung, Mangu Kang
  • Patent number: 8507790
    Abstract: A solar element with increased efficiency and also a method for increasing the efficiency of a solar cell are provided. The solar cell comprises a luminescent element, an upconverter, and also at least one selectively reflecting structure.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: August 13, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Albert-Ludwigs-Universitaet Freiburg
    Inventors: Jan Christoph Goldschmidt, Philipp Loeper, Marius Peters
  • Patent number: 8431817
    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may be a multi junction solar cell. The optoelectronic device may have a bi-layer electrical interconnect that is physically and electrically connected to sidewalls of the array of nanostructures. The optoelectronic device may be operated as a multi junction solar cell, wherein each junction is associated with one portion of the device. The bi-layer electrical interconnect allows current to pass from one portion to the next. Thus, the bi-layer electrical interconnect may serve as a replacement for a tunnel junction, which is used in some conventional multi junction solar cells.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 30, 2013
    Assignee: Sundiode Inc.
    Inventors: James C. Kim, Sungsoo Yi, Danny E. Mars