Patents Examined by Lindsey G. Wehrheim
  • Patent number: 11116412
    Abstract: The system determines a fetal blood oxygenation level by activating two or more light sources, having different wavelengths, which are positioned on the maternal abdomen of a pregnant mammal to direct light into a maternal abdomen toward a fetus. The system then receives a maternal signal from a first photodetector, which is positioned on the maternal abdomen to receive reflected light that traverses maternal tissue. The system also receives a mixed signal from a second photodetector, which is positioned on the maternal abdomen to receive reflected light that traverses both maternal and fetal tissue. The system performs a filtering operation that removes maternal signal components from the mixed signal to produce a fetal signal. The system determines the fetal blood oxygenation level by performing a pulse-oximetry computation on the fetal signal. The system dynamically adjusts operational parameters in the face of changing variables, such as fetus position and depth.
    Type: Grant
    Filed: November 11, 2017
    Date of Patent: September 14, 2021
    Assignee: The Regents of the University of California
    Inventors: Soheil Ghiasi, Daniel Fong
  • Patent number: 11103704
    Abstract: A cochlear including a housing, an antenna, a stimulation processor operably connected to the antenna, and an electrode array, operably connected to the stimulation processor, including a flexible body defining a longitudinal axis, a proximal region and a distal region, a plurality of electrically conductive contacts on the flexible body, and at least one stiffener within the flexible body.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: August 31, 2021
    Assignee: Advanced Bionics AG
    Inventors: Jeryle L. Walter, James George Elcoate Smith, Uli Gommel, Matthew Vadim Krywcun, Sarah Elizabeth Clabeaux, Nicholas Anthony Wise, Sung Jin Lee
  • Patent number: 11083895
    Abstract: Systems and methods for restoring and/or augmenting neural function are disclosed herein. One such method includes receiving signals associated with a first region of the nervous system of the individual, and generating a stimulation pattern based on (a) the signals associated with the first region of the nervous system and (b) a first artificial network. The method can further include outputting the stimulation pattern to (a) a second region of the nervous system to induce a behavioral output from the individual and (b) a second artificial network configured to predict the behavioral output from the individual. The method can also include comparing the induced behavioral output to the predicted behavioral output to generate an error signal. Parameters of the first artificial network can be adjusted using the error signal and the second artificial network to optimize the stimulation patterns and other output signals to achieve restoration and/or augmentation goals.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: August 10, 2021
    Assignee: University of Washington
    Inventor: Rajesh Rao
  • Patent number: 11076768
    Abstract: A physiological detection system including an image sensor, a converting unit, a retrieving unit and a processing unit is provided. The image sensor includes a plurality of pixels respectively configured to output a PPG signal. The converting unit is configured to convert a plurality of PPG signals of a plurality of pixels regions to a plurality of frequency domain signals. The retrieving unit is configured to respectively retrieve a spectral energy of the frequency domain signals corresponding to each of the pixel regions. The processing unit is configured to construct a 3D energy distribution according to the spectral energies.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: August 3, 2021
    Assignee: PIXART IMAGING INC.
    Inventors: Sen-Huang Huang, Ren-Hau Gu
  • Patent number: 11071858
    Abstract: A hermetically sealed filtered feedthrough assembly attachable to an AIMD includes an insulator hermetically sealing a ferrule opening of an electrically conductive ferrule with a gold braze. A co-fired and electrically conductive sintered paste is disposed within and hermetically seals at least one via hole extending in the insulator. At least one capacitor is disposed on the device side. An active electrical connection electrically connects a capacitor active metallization and the sintered paste. A ground electrical connection electrically connects the gold braze to a capacitor ground metallization, wherein at least a portion of the ground electrical connection physically contacts the gold braze. The dielectric of the capacitor may be less than 1000 k. The ferrule may include an integrally formed peninsula portion extending into the ferrule opening spatially aligned with a ground passageway and metallization of an internally grounded feedthrough capacitor.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: July 27, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz, Marc Gregory Martino
  • Patent number: 11058886
    Abstract: Current cancer treatments such as surgery, radiation and chemotherapy have significant side-effects for the patients. New treatments are being developed to reduce these side-effects while giving doctors alternative methods to treat patients. This invention introduces a new method for treatment of malignant tumors including brain cancer, pancreatic cancer, lung cancer, and ovarian cancer. The method uses low-power RF wave to disrupt and kill cancer cells during mitosis resulting in shrinking the size of solid tumors. Direction of polarization of the electric field of the RF wave relative to the axis of division of the cancer cells has an impact on the ability of the RF wave in disrupting mitosis and killing the cancer cells. Since the orientation of the cancer cells in a tumor are random a method is needed to change the orientation of the applied RF wave spatially with time to maximize elimination of the cancer cells.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: July 13, 2021
    Assignee: EVANESC THERAPEUTICS, INC.
    Inventors: Mehran Matloubian, Timothy J. Brockett, Gregg A. Hollingsworth
  • Patent number: 11051766
    Abstract: The present disclosure pertains to a system for facilitating configuration modifications for a patient interface computer system based on an equivalent effort parameter. In some embodiments, the system obtains (i) one or more first measurements associated with a first subject, the first subject having a clinical coefficient, (ii) one or more second measurements associated with a second subject. The system determines (i) a first effort parameter based on the one or more first measurements, (ii) a second effort parameter based on the one or more second measurements, and (iii) an equivalent effort factor for the first subject based on the one or more first measurements, the one or more second measurements, and the clinical coefficient. The system causes a configuration of the patient interface computer system to be modified based on the equivalent effort factor.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 6, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Maartje Helena Schonenberg, Privender Kaur Saini, Lenneke Van Genugten, Mareike Klee, Rita Priori, Marian Dekker, Chevone Marie Barretto, Wilhelmus Johannes Joseph Stut, Christian Andreas Tiemann
  • Patent number: 11045657
    Abstract: An energy harvester converts into electrical energy the external stresses applied to the implant at the rhythm of the heartbeats. This harvester comprises an inertial unit. A transducer provides an oscillating electrical signal that is rectified and regulated, for powering the implant and/or charging a battery. The instantaneous variations of this electrical signal between two heartbeats are analyzed inside successive time windows, to derive therefrom a physiological parameter and/or a physical activity parameter of the patient with the implant, in particular as a function of a peak of amplitude of the first oscillation of the electrical signal, and of the level of this signal after the bounce phase of the signal oscillation.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: June 29, 2021
    Assignee: CAIRDAC
    Inventors: Jean-Luc Bonnet, Guillaume Ferin
  • Patent number: 11045359
    Abstract: A treatment system including one or more of a wound dressing having one or more of a substrate element, a dressing member disposed on the substrate element, an adhesive element disposed on the substrate element, and a tether connecting the wound dressing to a treatment device.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: June 29, 2021
    Assignee: HaloStim, LLC
    Inventor: Andrew Pandya
  • Patent number: 11033324
    Abstract: System for electrically ablating tissue of a patient through a plurality of electrodes includes a memory, a processor and a treatment control module stored in the memory and executable by the processor. The treatment control module generates an estimated treatment region based on the number of electrical pulses to be applied.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: June 15, 2021
    Assignee: AngioDynamics, Inc.
    Inventors: Peter Callas, David Warden, Robert M. Pearson
  • Patent number: 11006847
    Abstract: A system including a sensor interface coupled to a processor. The sensor interface is configured to receive and process an analog electrocardiogram signal of a subject and provide a digitized electrocardiogram signal sampled over a first time period and a second time period that is subsequent to the first time period. The processor is configured to receive the digitized electrocardiogram signal, to analyze a frequency domain transform of the digitized electrocardiogram signal sampled over the first and second time periods and determine first and second metrics indicative of metabolic state of a myocardium of the subject during the first and second time periods, respectively, to compare the first and second metrics to determine whether the metabolic state of the myocardium of the subject is improving, and to indicate administration of an intervention to the subject in response to a determination that the metabolic state is not improving.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: May 18, 2021
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Ulrich Herken
  • Patent number: 11000225
    Abstract: Various embodiments of the present technology generally relate to a single monolithic IC to perform simultaneous optogenetic neural inhibition and extracellular electrophysiological recording in-vivo. Some embodiments include a low input capacitance (e.g., 9.7 pF) amplifier particularly tailored for the use of high-impedance electrodes to conduct single neuron extracellular recording integrated with programmable high current drivers for optogenetic stimulation or inhibition on the same IC chip. Some embodiments use a noise model to guide the IC design process to obtain parameters for optimal signal-to-noise ratio. The performance of the IC chip was demonstrated on an anesthetized gerbil expressed with inhibitory optogenetic protein (Halorhodopsin). Spontaneous action potentials from the fifth nerve of the brainstem were recorded by the amplifier and were subsequently inhibited by laser illumination.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: May 11, 2021
    Assignees: The Regents of the University of Colorado, University of Macau
    Inventors: Tim Lei, Achim Klug, Sio Hang Pun, Changhao Chen, Mang I. Vai, Peng Un Mak, Elizabeth McCullagh
  • Patent number: 11000219
    Abstract: An object of the present invention is to provide an electrocardiogram measurement apparatus capable of significantly reducing the number of electrodes and measuring even a faint signal. The present invention provides an electrocardiogram measurement apparatus including a first electrode and a second electrode to be brought into contact with a body surface near an artery, an electrocardiogram measurement means for measuring a signal obtained from the first electrode and the second electrode, an artery position measurement means for identifying a position at which a measured value of a measured signal is largest as a position of an artery; and a notification means for notifying a user of information indicating the position of an artery.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: May 11, 2021
    Assignee: NEC CORPORATION
    Inventors: Tetsuri Ariyama, Masahiro Kubo, Katsumi Abe, Ersin Altintas, Yuji Ohno, Takeshi Akagawa
  • Patent number: 10993674
    Abstract: The present disclosure provides systems and methods for classifying signals of interest in a cardiac rhythm management (CRM) device. A CRM device includes an intrinsic activation sensing circuit configured to pass signals falling within a first passband, a crosstalk sensing circuit configured to pass signals falling within a second passband, wherein the second passband contains higher frequencies than the first passband, and a computing device communicatively coupled to the intrinsic activation sensing circuit and the crosstalk sensing circuit, the computing device configured to classify a signal of interest as one of an intrinsic activation signal and a crosstalk signal based on whether the signal of interest is passed by the intrinsic activation sensing circuit and the crosstalk sensing circuit.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 4, 2021
    Assignee: PACESETTER, INC.
    Inventors: Matthew G. Fishler, Gene A. Bornzin, Benjamin T. Persson, Kenneth J. Carroll
  • Patent number: 10993675
    Abstract: Presented are concepts for monitoring a physical or mental capability of a person. One such concept employs the step of detecting a value of a property of the person or an object manipulated by the person. A trend in a physical or mental capability of the person may then be determined based on the detected value and historical data relating to one or more previously detected values of the property.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: May 4, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Warner Rudolph Theophile Ten Kate
  • Patent number: 10987058
    Abstract: Systems and methods are provided for optimizing hemodynamics within a patient. Specifically, the system incorporates invasive sensor data (e.g., pressure measurements) combined with mechanisms to dynamically change the loading conditions of the heart and/or heart rate, in order to understand hemodynamic parameters. Computational analyses on dynamic sensor data are used to understand and guide heart rate, filling pressures, and/or volume resuscitation in critically ill patients. By pacing the heart or inducing tricuspid regurgitation, the system may cause dynamic changes in sensor data to understand optimal loading conditions and heart rates. While determining optimal hemodynamic parameters, the system may then automatically optimize the heart rate and/or filling pressures in critically ill patients.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: April 27, 2021
    Assignee: CARDIOFLOW TECHNOLOGIES, LLC
    Inventor: Daniel Walter Kaiser
  • Patent number: 10981004
    Abstract: The present disclosure refers to systems for electrical neurostimulation of a spinal cord of a subject in need of nervous system function support. In one example, a system comprises a signal processing device configured to receive signals from the subject and operate signal-processing algorithms to elaborate stimulation parameter settings; one or more multi-electrode arrays suitable to cover a portion of the spinal cord of the subject; and an Implantable Pulse Generator (IPG) configured to receive the stimulation parameter settings from the signal processing device and simultaneously deliver independent current or voltage pulses to the one or more multiple electrode arrays, wherein the independent current or voltage pulses provide multipolar spatiotemporal stimulation of spinal circuits and/or dorsal roots. Such system advantageously enables effective control of nervous system functions in the subject by stimulating the spinal cord, such as the dorsal roots of the spinal cord, with spatiotemporal selectivity.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: April 20, 2021
    Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)
    Inventors: Jocelyne Bloch, Grégoire Courtine, Nikolaus Wenger, Silvestro Micera, Marco Capogrosso
  • Patent number: 10981009
    Abstract: A medical device comprises therapy delivery circuitry and processing circuitry. The therapy delivery circuitry is configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient. The ATP therapy includes one or more pulse trains and each of the one or more pulse trains includes a plurality of pacing pulses. The processing circuitry is configured to, for at least one of the plurality of pacing pulses of at least one of the one or more pulse trains, determine at least one latency metric of an evoked response of the heart to the pacing pulse. The processing circuitry is further configured to modify the ATP therapy based on the at least one latency metric.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: April 20, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Troy E. Jackson, Vincent P. Ganion
  • Patent number: 10974057
    Abstract: An apparatus configured to control transmission of wireless energy supplied to an electrically operable medical device adapted to be implanted in a mammal patient, is disclosed. The apparatus comprises an external energy source, an internal energy receiver located inside the patient and being adapted to receive the wireless energy, a stabilizing unit adapted to stabilize the wirelessly received energy in the electrically operable medical device, and a control unit comprising at least one of an internal control unit and an external control unit.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: April 13, 2021
    Inventor: Peter Forsell
  • Patent number: 10974055
    Abstract: Circuitry useable to protect and reliably charge a rechargeable battery, even from a zero-volt state, is disclosed, and is particularly useful when employed in an implantable medical device. The circuit includes two charging paths, a first path for trickle charging the battery, and a second path for charging the battery at relatively higher currents. A passive diode is used in the first trickle-charging path which allows trickle charging even when the battery voltage is too low for reliable gating, while a gateable switch (preferably a PMOS transistor) is used in the second higher-current charging path when the voltage is higher and the switch can therefore be gated more reliably. A second diode between the two paths ensures no leakage to the substrate through the gateable switch during trickle charging. The load couples to the battery through the switch, and preferably through a second switch specifically used for decoupling the load.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Yuping He, David K. L. Peterson