Patents Examined by Lisa Caputo
  • Patent number: 10173492
    Abstract: A dispensing canister apparatus for controlled release of a stored fluid includes first and second thermochromic clips for providing a visual indication of the ambient air temperature; a hose member surrounding a channel and having first and second open ends, and the first open end being connected to the canister such that the channel is in fluid flow communication with the inner cavity; a control on the canister for selectively actuating the flow of the stored fluid from the inner cavity into the channel and through a coupler member at the second open end of the hose member; and wherein storage of the first thermochromic clip in the first receptacle positions the fastening member such that it obstructs movement of the control for actuating the flow of the stored fluid.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: January 8, 2019
    Assignee: TSI Products, Inc.
    Inventor: Michael E. Quest
  • Patent number: 10175123
    Abstract: MEMS-based calorimeter including two microchambers supported in a thin film substrate formed on a polymeric layer is provided. The thin film substrate includes a thermoelectric sensor configured to measure temperature differential between the two microchambers, and also includes a thermally stable and high strength polymeric diaphragm. Methods for fabricating the MEMS-based calorimeter, as well as methods of using the calorimeter to measure thermal properties of materials, such as biomolecules, or thermodynamic properties of chemical reactions or physical interactions, are also provided.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 8, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Qiao Lin, Bin Wang, Yuan Jia
  • Patent number: 10172712
    Abstract: The invention is directed to a novel method for measuring contraction characteristics of engineered heart tissue constructs (16) which is based on the mechanical coupling of the construct (16) to a support element (8) which comprises or is mechanically coupled to a piezoelectric element (10). An apparatus (1) for carrying out the method of the invention is also provided.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 8, 2019
    Assignees: Universitätsklinikum Hamburg-Eppendorf, Technische Universität Hamburg-Harburg
    Inventors: Thomas Eschenhagen, Ingra Mannhardt, Jörg Müller, Christoph Warncke, Jördis Weiser
  • Patent number: 10175120
    Abstract: A method includes measuring a first temperature difference between first heat entry and discharge parts on a first heat transfer path extending from a portion of a surface of the object to the first heat discharge part using a first thermopile, and measuring a second temperature difference between a second heat entry and discharge parts on a second heat transfer path extending from another portion of the surface of the object to the second heat discharge part using a second thermopile, and measuring a reference temperature at a predetermined position on the first or second heat transfer path using a temperature sensor, and calculating the internal temperature of the object using the measured first and second temperature differences, and the reference temperature, and at least one predetermined value excluding a physical property value of a non-heating part of the object located at a surface side of the object.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: January 8, 2019
    Assignee: OMRON Corporation
    Inventors: Shinya Nakagawa, Masao Shimizu, Tsuyoshi Hamaguchi
  • Patent number: 10166680
    Abstract: Using various embodiments, an autonomous robot using data captured from a living subject are disclosed. In one embodiment, an autonomous robot is described comprising a robotic skeleton designed similar to that of a human skeleton to simulate similar movements as performed by living subjects. The movements of the robotic skeleton are resultant due to control signals received by effectors present near or on the robotic skeleton. The robot can be configured to receive sensor data transmitted from a sensor apparatus that periodically gathers the sensor data from a living subject. The robot can then process the sensor data to transmit control signals to the effectors to simulate the actions performed by the living subject and perform a predictive analysis to learn the capability of generating spontaneous and adaptive actions, resulting in an autonomous robot that can adapt to its surroundings.
    Type: Grant
    Filed: July 30, 2016
    Date of Patent: January 1, 2019
    Inventor: Heinz Hemken
  • Patent number: 10168231
    Abstract: There is described a system for measuring an environmental parameter such as temperature experienced by a resistive component such as a thermistor (107) in a galvanically isolated circuit, or for measuring the voltage developed by a component. The system comprises a measurement circuit (1) comprising a voltage pulse generator (114). The measurement circuit is inductively coupled to the galvanically isolated circuit by a flyback transformer (101) such that a stable voltage (V104) across a first capacitor (114) in the measurement circuit after many voltage pulses is proportional to a stable voltage (V106) across a second capacitor (106) connected across the component in the galvanically isolated circuit. The stable voltages across the first and second capacitors are adjustable by adjusting a duty cycle of the voltage pulses.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 1, 2019
    Assignee: TECHNELEC LTD
    Inventors: Charles Pollock, Helen Pollock
  • Patent number: 10168232
    Abstract: A non-contact temperature sensor is provided, the sensor including: an insulating film, a thin film thermistor portion formed on a front-surface of the insulating film, a pair of comb shaped electrodes formed on the thin film thermistor portion, a pair of pad electrodes formed on the front-surface of the insulating film, a pair of pattern wiring portions, and a pair of lead frames that is adhered to the pair of pad electrodes on the front-surface side of the insulating film, wherein the thin film thermistor portion is formed in a thermistor forming region arranged on the front-end side of the insulating film, the pad electrodes are formed in an electrode forming region arranged on the base-end side of the insulating film, the front-end side of the pair of lead frames is arranged to surround the circumference of the thermistor forming region in a non-contact manner.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: January 1, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenzo Nakamura, Masashi Nishiyama, Fumio Matsumoto
  • Patent number: 10168262
    Abstract: A device and methods for measuring the tension applied to a suture are disclosed. In one embodiment, the device comprises a housing comprising at least one attachment point for attachment of the suture, for the device to hang from the suture when a tension is applied to the suture. The device may also comprise a force sensing unit, contained in the housing and configured to measure the amount of tension applied to the suture.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: January 1, 2019
    Assignees: Rehabilitation Institute of Chicago, Northwestern University
    Inventors: Yasin Dhaher, Matthew Patrick
  • Patent number: 10168244
    Abstract: A gaseous fuel monitoring system can include a gaseous fuel supply enclosure, an optical line extending along the gaseous fuel supply enclosure, and a relatively highly thermally conductive material contacting both the gaseous fuel supply enclosure and the optical line. The relatively highly thermally conductive material can comprise a pyrolytic carbon material. A method of detecting leakage from a gaseous fuel supply enclosure can include securing an optical line to the gaseous fuel supply enclosure, the securing comprising contacting a pyrolytic carbon material with the optical line and the gaseous fuel supply enclosure. A gaseous fuel monitoring system can include an optical interrogator connected to the optical line, which interrogator detects changes in light transmitted by the optical line due to changes in vibrations of the enclosure.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: January 1, 2019
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Rory D. Daussin, Neal G. Skinner
  • Patent number: 10167719
    Abstract: Methods and systems for substantially simultaneous evaluation of rock sample permeability and porosity, and composition of formation fluids, are provided. Such methods and systems may be used to evaluate the permeability, porosity, and composition of at least a portion of a subterranean formation in a drilling operation. An example of such a method may include passing a cleaning fluid through the rock sample so as to extract at least a portion of one or more formation fluids from the rock sample in an effluent comprising the cleaning fluid and the portion of the one or more formation fluids; and determining one or more properties of the effluent so as to determine the composition of the portion of the one or more formation fluids, and so as to determine the permeability and porosity of the rock sample.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: January 1, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Abdalla Moustafa Ezzat, Michael T. Pelletier
  • Patent number: 10161845
    Abstract: A diagnostic method for a particulate filter in an exhaust line of an internal combustion engine is presented. The exhaust gas stream downstream of the particulate filter is monitored by a downstream soot sensor having a characteristic sensor cycle; and the accumulation of soot at an upstream soot sensor is monitored over a respective sensor cycle of the downstream soot sensor. The particulate filter operating status is decided on the basis of the information of the downstream and upstream soot sensors. The amount of accumulated soot is determined based on the sensor cycles of the upstream soot sensor, and may be expressed as a soot loading level or as a number of sensor cycles. The efficiency of the particulate filter may be determined from the respective number of sensor cycles of the soot sensors.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: December 25, 2018
    Assignee: DELPHI TECHNOLOGIES IP LIMITED
    Inventor: Philippe Bovi
  • Patent number: 10161782
    Abstract: Provided is a sensor operative to track changes in a liquid level of a hand-held liquid container, the sensor comprising: an ultrasonic liquid-level sensor configured to indicate a liquid level of a liquid in a hand-held liquid container, wherein the ultrasonic liquid-level sensor is capable of indicating the liquid level when the surface of the liquid is less than 20 centimeters away from the ultrasonic liquid-level sensor; a radio transmitter; and a processor configured to draw power from a portable power source, receive liquid-level indications from the ultrasonic liquid-level sensor, and cause the radio transmitter to transmit data indicative of changes in the liquid level.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: December 25, 2018
    Assignee: Trago, Inc.
    Inventors: Davis Michael Saltzgiver, Jac Tyson Saltzgiver, III
  • Patent number: 10161826
    Abstract: An apparatus and method for inducing multiaxial vibrations to simulate an environment for transporting a stack of products is provided. A lower platform is provided for inducing uniaxial vibrations. A link is connected to the lower platform by a lower end of the link. The upper end of the link has a universal joint, through which the link is connected to an upper platform. The upper platform has a top surface, on which the stack of products can be placed. In operations, the uniaxial vibrations of the lower platform are transferred to the upper platform through the link and the universal joint, to induce pivotal movement of the upper platform with respect to the shaft of the link. As a result, multiaxial vibrations can be induced to the stack of products placed on the top surface of the upper platform.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: December 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Shawn Canfield, Steven C. McIntosh, Budy D. Notohardjono
  • Patent number: 10161818
    Abstract: A system operating based on Knudsen thermal force includes a microelectromechanical (MEMS) gas sensor, the MEMS gas sensor includes a substrate. The sensor further includes at least one stationary assembly fixedly coupled to the substrate, the at least one stationary assembly terminating at corresponding pads configured to receive an electrical current for heating the at least one stationary assembly. Additionally, the sensor includes at least one moveable assembly disposed above the substrate and biased to move substantially according to a main axis and juxtaposed with the at least one stationary assembly.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: December 25, 2018
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Alina Alexeenko, Andrew Strongrich
  • Patent number: 10161816
    Abstract: A torque sensor arrangement configured to attach between a first part and a second part to sense torque therebetween, the torque sensor arrangement comprising: an interface member having on its exterior an engagement configuration configured to rotationally engage the first part; a torsion member comprising a deflectable body attached at one end thereof to the interface member and comprising, at the other end of the deflectable body, an engagement configuration configured to rotationally engage the second part; and a deflection sensor attached to the deflectable body; wherein the interface member defines a rigid sleeve extending around the deflectable body and the torque sensor arrangement further comprises a bushing located between and in contact with both the sleeve and the deflectable body.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: December 25, 2018
    Assignee: CMR SURGICAL LIMITED
    Inventors: Thomas Bates Jackson, Keith Marshall
  • Patent number: 10161817
    Abstract: A pressure sensor comprises a first substrate containing a processing circuit integrated thereon and a cap attached to the first substrate. The cap includes a container, a holder, and one or more suspension elements for suspending the container from the holder. The container includes a cavity and a deformable membrane separating the cavity and a port open to an outside of the pressure sensor. The container is suspended from the holder such that the deformable membrane faces the first substrate and such that a gap is provided between the deformable membrane and the first substrate which gap contributes to the port. Sensing means are provided for converting a response of the deformable membrane to pressure at the port into a signal capable of being processed by the processing circuit.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: December 25, 2018
    Assignee: InvenSense, Inc.
    Inventors: Felix Mayer, Marc Von Waldkirch, Johannes Buhler, Rene Hummel, Stephan Braun, Marion Hermersdorf, Chung-Hsien Lin
  • Patent number: 10162189
    Abstract: The present invention is directed to a device, system and method for the visual alignment of a pipettor tip and a reference point marker. The invention also relates to a use of the device. The device comprises a mirror and two lenses inside the device and four windows, wherein two first windows are perpendicular to each other, the mirror is arranged behind one of the two first windows, the two lenses are each arranged behind two second windows, one of the first windows and one of the second windows are arranged parallel to each other, and one of the first windows and one of the second windows are arranged perpendicular to each other.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: December 25, 2018
    Assignee: STRATEC Biomedical AG
    Inventor: Ruediger Retzlaff
  • Patent number: 10161956
    Abstract: An accelerometer includes an upper stator, a lower stator, and a proof mass assembly disposed between the upper and the lower stator. At least one of the upper stator or the lower stator includes an excitation ring, a magnet coupled to the excitation ring, and an asymmetric pole piece coupled to a top surface of the magnet. The asymmetric pole piece covers at least a portion of the top surface of the magnet such that a center of magnetic flux associated with the at least one of the upper stator or the lower stator is aligned with a center of mass of the proof mass assembly.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: December 25, 2018
    Assignee: Honeywell International Inc.
    Inventor: Paul W. Dwyer
  • Patent number: 10161242
    Abstract: System and method for monitoring frac fluid flow through a column bed includes preparing a vessel (112, 440) with a column including a filtering member (120, 420), a column bed (114, 414) simulating a downhole environment, and a frac fluid (116, 416). Frac fluid (116, 416) is flowed through the column bed (114, 414) at an acceleration exceeding gravity for a predetermined period of time. The amount of liquid that flows through the column bed (114, 414) and that is recovered after the predetermined period of time is then determined.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: December 25, 2018
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Jody Marie Burks, Denise Nicole Benoit, Chandra Sekhar Palla-Venkata
  • Patent number: 10161822
    Abstract: An embodiment of an inventive method for measuring pressure provides for a reference environment and an ambient environment. The reference environment is internal to a receptacle and has a reference fluid pressure. The ambient environment is external to the receptacle and has an ambient fluid pressure. Equalization of the reference pressure and the ambient pressure with respect to each other is effected by enabling and disenabling fluidic passage between the reference environment and the ambient environment. The fluidic passage is enabled until the reference pressure and the ambient pressure are equal, and is then disenabled to stabilize the equalized reference pressure. After the reference pressure and the ambient pressure are equalized, a differential pressure is measured between the equalized reference pressure and the ambient pressure. Inventive pressure measurements may be conducted, for example, repeatedly in association with a moving underwater model at various water depths and vehicular speeds.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: December 25, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Joshua B. Rollins