Patents Examined by Lisa Herring
  • Patent number: 9550694
    Abstract: Methods and apparatus provide for: feeding glass batch material into a plasma containment vessel in such a way that the glass batch material is dispensed as a sheet of glass batch material particles; directing one or more sources of plasma gas into the inner volume of the plasma containment vessel in such a way that the plasma gas enters the plasma containment vessel as at least one sheet of plasma gas; and applying an alternating electric field to facilitate production of a plasma plume within the inner volume of the plasma containment vessel, where the plasma plume is of dimensions sufficient to envelope the sheet of glass batch material particles, and is of sufficient thermal energy to cause the glass batch material to react and melt thereby forming substantially homogeneous, spheroid-shaped glass intermediate particles.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: January 24, 2017
    Assignee: Corning Incorporated
    Inventor: Daniel Robert Boughton
  • Patent number: 9540272
    Abstract: A soot deposition burner assembly, having at least one burner including a burner face on a first surface of a burner support. The burner produces a flame which extends generally perpendicularly to the first surface. A burner shield includes a first wall extending generally perpendicularly from the first surface surrounding the burner face. The burner shield has a base end with a first surface area facing toward the first surface and a shield face with a second surface area facing away from the first surface. To reduce the buildup of soot material, the second surface area is smaller than the first surface area, and the wall thickness is less at the shield face than the base end. Additionally, air can be directed along an exterior surface of the first wall from the base end toward the shield face to further reduce soot buildup.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: January 10, 2017
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Brian Lee Harper, Mothivel Balaiyya Mummudi-Boopathy, Pushkar Tandon
  • Patent number: 9533906
    Abstract: Apparatus includes a first and second conduits configured to form an annulus between them. An adjustable structure includes a body having an upper surface, a lower surface, and a circumferential surface abutting a portion of the internal surface of the second conduit. The structure is adjustable axially in relation to and removably attached to the first conduit via a hub. The hub defines a central passage for fuel or oxidant. The body has one or more non-central through passages configured such that flow of an oxidant or fuel therethrough causes the fuel or oxidant to intersect flow of fuel or oxidant exiting from the central passage in a region above the upper surface of the body.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: January 3, 2017
    Assignee: Johns Manville
    Inventor: Mark William Charbonneau
  • Patent number: 9533909
    Abstract: Methods and apparatus provide for: producing a plasma plume within a plasma containment vessel from a source of plasma gas; feeding an elongate feedstock material having a longitudinal axis into the plasma containment vessel such that at least a distal end of the feedstock material is heated within the plasma plume; and spinning the feedstock material about the longitudinal axis as the distal end of the feedstock material advances into the plasma plume, where the feedstock material is a mixture of compounds that have been mixed, formed into the elongate shape, and at least partially sintered.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: January 3, 2017
    Assignee: Corning Incorporated
    Inventor: Daniel Robert Boughton
  • Patent number: 9533908
    Abstract: A glass-substrate manufacturing method which includes a forming step and a cooling step. In the forming step, a molten glass is formed into a sheet glass by a down-draw process. In the cooling step, the sheet glass is cooled. The cooling step includes first, second and third coating steps as defined herein.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: January 3, 2017
    Assignee: AvanStrate Inc.
    Inventor: Hiroyuki Kariya
  • Patent number: 9522837
    Abstract: A method of making a shaped glass article includes placing a glass sheet on top of a mold. A heat exchanger is arranged relative to the mold such that a heat exchange surface of the heat exchanger is in opposing relation to a back surface of the mold and separated from the back surface of the mold by a gap containing a layer of gas. The height of the gap is selected such that the dominant heat transfer between the heat exchange surface and the back surface of the mold is by conduction through the layer of gas. The glass sheet is heated and formed into a shaped glass article with the mold. The heat exchanger is operated to remove heat from at least part of the mold during at least one of heating the glass sheet, forming the shaped glass article, and cooling the shaped glass article.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: December 20, 2016
    Assignee: Corning Incorporated
    Inventors: Bushra Afzal, Keith Raymond Gaylo, Elias Panides, Kevin Lee Wasson
  • Patent number: 9522836
    Abstract: A method of making a glass sheet (10) comprises laminating a high CTE core glass (11) to a low CTE clad glass (12) at high temperatures and allowing the laminate (10) to cool creating compressive stress in the clad glass (12), and then ion exchanging the laminate (10) to increase the compressive stress in the outer near surface regions of the clad glass (12). The core glass (11) may include ions that exchange with ion in the clad glass (12) to increase the compressive stress in inner surface regions of the clad glass (12) adjacent to the clad glass/core glass interfaces. The glass laminate (10) may be formed and laminated using a fusion forming and laminating process and fusion formable and ion exchangeable glass compositions.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: December 20, 2016
    Assignee: Corning Incorporated
    Inventors: Suresh Thakordas Gulati, Michael Thomas Gallagher, Timothy James Kiczenski, Robert Anthony Schaut, Natesan Venkataraman
  • Patent number: 9513433
    Abstract: An apparatus for generating long-period gratings in an optical fiber is disclosed herein. The apparatus includes an intensity adjusting unit and a period adjusting unit that come into contact with a portion of an optical fiber where gratings will be generated. The intensity adjusting unit includes a press part configured to press the portion of the optical fiber where gratings will be generated against a grating generating unit, and an intensity adjusting mechanism configured to apply force to the press part. The period adjusting unit includes a period adjusting mechanism configured to selectively increase and decrease the length of the grating generating unit.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: December 6, 2016
    Assignee: KS PHOTONICS INC.
    Inventor: Young Kie Kim
  • Patent number: 9505646
    Abstract: A melter apparatus includes a floor, a ceiling, and a substantially vertical wall connecting the floor and ceiling at a perimeter of the floor and ceiling, a melting zone being defined by the floor, ceiling and wall, the melting zone having a feed inlet and a molten glass outlet positioned at opposing ends of the melting zone. The melting zone includes an expanding zone beginning at the inlet and extending to an intermediate location relative to the opposing ends, and a narrowing zone extending from the intermediate location to the outlet. One or more burners, at least some of which are positioned to direct combustion products into the melting zone under a level of molten glass in the zone, are also provided.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: November 29, 2016
    Assignee: Johns Manville
    Inventor: Aaron Morgan Huber
  • Patent number: 9505648
    Abstract: Mold assemblies for forming shaped glass articles are disclosed herein. According to one embodiment, a mold assembly may include a mold body including a mold cavity, a support base, and a plenum body extending between the mold body and the support base. When the mold assembly is heated to an average temperature of greater than or equal to about 650° C. by an overhead heating source, the temperature at the center of the mold cavity may be less than at the perimeter of the mold cavity. The difference between the temperature at the center of the mold cavity and the temperature at the perimeter of the mold cavity may be at least about 12° C.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: November 29, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Bushra Afzal, Keith Raymond Gaylo, Elias Panides
  • Patent number: 9505653
    Abstract: Disclosed herein are methods for strengthening glass articles having strength-limiting surface flaws, together with strengthened glass articles produced by such methods, and electronic devices incorporating the strengthened glass articles. The methods generally involve contacting the glass articles with a substantially fluoride-free aqueous acidic treating medium for a time at least sufficient to increase the rupture failure points of the glass articles.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: November 29, 2016
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Richard Michael Fiacco, Timothy Michael Gross
  • Patent number: 9505654
    Abstract: A method for strengthening a glass article. The method includes exposing a selected area of the glass article to a beam of electromagnetic radiation in order to diffuse first alkali metal ions in the selected area out of the glass article and to diffuse second alkali metal ions on a surface of the glass article and in the selected area into the glass article. The second alkali metal ions are larger than the first alkali metal ions. The beam of electromagnetic radiation heats first alkali metal ions and the second alkali metal ions to a temperature that is greater than that of a glass network of the glass article.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: November 29, 2016
    Assignee: Gyrotron Technology, Inc.
    Inventors: Vladislav Sklyarevich, Mykhaylo Shevelev
  • Patent number: 9492831
    Abstract: Methods and systems for de-stabilizing foam produced in submerged combustion melters. A molten mass of glass and bubbles is flowed into an apparatus downstream of a submerged combustion melter. The downstream apparatus includes a floor, a roof and a wall connecting the floor and roof, but is devoid of submerged combustion burners and other components that would increase turbulence of the molten mass. The molten mass has foam on at least a portion of a top surface of the molten mass. One method includes directly impinging an impinging composition onto at least a portion of the foam in the downstream apparatus. Systems for carrying out the methods are described.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: November 15, 2016
    Assignee: Johns Manville
    Inventors: Mark William Charbonneau, Aaron Morgan Huber
  • Patent number: 9492968
    Abstract: A system and a method of fabricating a complex three dimensional part are described. The system comprises a rapid prototyping machine configured to provide a disposable mold having a negative imprint of a complex three dimensional structure, a mixer, an injection molding machine, and a furnace system. A slurry comprising a powder and a binder is introduced into the disposable mold, the binder is cured, the disposable mold is removed, and the binder is removed, leaving an intact cured structure. The cured structure is sintered to fabricate the complex three dimensional part.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 15, 2016
    Assignee: General Electric Company
    Inventors: Hsin-Pang Wang, Erin Marie Perry
  • Patent number: 9481594
    Abstract: The invention relates to a process for manufacturing a refractory product, comprising the following successive steps: a) mixing of raw materials so as to form a suitable feedstock so that the block obtained in step d) comprises more than 85% of ZrO2, b) melting of said feedstock until a molten material is obtained, c) optionally, casting said molten material, d) cooling of the molten material to solidification in the form of a block, e) optionally, heat treatment, process comprising a compression operation in which a compression pressure of greater than 0.2 MPa is applied to at least one portion of the outer surface of the block obtained in step d), the compression operation beginning at a temperature above the temperature at which, in said block, tetragonal zirconia is converted to monoclinic zirconia or “phase transformation temperature”, and ending at a temperature below said phase transformation temperature.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: November 1, 2016
    Assignee: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Michel Gaubil, Ludovic Massard
  • Patent number: 9469561
    Abstract: A glass sheet is placed on a mold and heated to a first temperature. The glass sheet is then formed into a glass article having a three-dimensional shape using the mold. An isothermal heat transfer device comprising at least one heat pipe is provided in thermal contact with the mold. With the glass article on the mold and the isothermal heat transfer device in thermal contact with the mold, the glass article, mold, and isothermal heat transfer device are transported along a thermally-graded channel to cool the glass article to a second temperature. During the transporting, the isothermal heat transfer device transfers heat from a relatively hot region of the mold to a relatively cold region of the mold.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: October 18, 2016
    Assignee: Corning Incorporated
    Inventors: Nikolaos P Kladias, Kenneth Spencer Morgan, Elias Panides, Rohit Rai, John R Ridge, Ljerka Ukrainczyk
  • Patent number: 9469559
    Abstract: A float glass system (10) includes a float bath (14) having a pool of molten metal (16). A chemical vapor deposition coater (32) is located in the float bath (14) above the pool of molten metal (16). The coater (32) includes at least one low-coherence interferometry probe (38) located in or on the coater (32) and connected to a low-coherence interferometry system (36). Another low-coherence interferometry probe 138 can be located outside an exit end of the float bath (14) and connected to the same or another low-coherence interferometry system (36).
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: October 18, 2016
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Yu Jiao, James W. McCamy, David Hanekamp
  • Patent number: 9463996
    Abstract: To provide a glass substrate for a display cover glass not only having excellent strength and antibacterial properties but also having a high transparency and a high visible transmittance suitable as a cover glass for a display device. A glass substrate for a display cover glass, which comprises a surface compressive stress layer and an antibacterial substance-containing layer formed on the glass substrate surface, characterized by having a ratio (T1/T2) of the transmittance T1 at a wavelength of 428 nm to the transmittance T2 at a wavelength of 650 nm of the glass substrate of at least 0.95, and a transmittance at a wavelength of 428 nm of at least 86% when the thickness of the glass substrate is from 0.1 to 3.0 mm.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: October 11, 2016
    Assignee: Asahi Glass Company, Limited
    Inventors: Hiroyuki Yamamoto, Yusaku Matsuo
  • Patent number: 9458049
    Abstract: An apparatus for manufacturing an optical fiber is provided. The apparatus includes a spindle having a bore for receiving a preform of the optical fiber along a longitudinal axis defined by the spindle. A plurality of work holding devices are positioned apart from each other along the longitudinal axis of the spindle and configured to secure the preform against the spindle at two or more distinct positions when the preform is spinning The plurality of work holding devices comprises any combination of chucks, collets, cams, set screws, or shims. A position of at least one of the work holding device is adjustable to shift the preform away from the longitudinal axis.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: October 4, 2016
    Assignee: OFS FITEL, LLC
    Inventor: Roy M Ortiz
  • Patent number: 9458047
    Abstract: Provided is a method of cutting a glass sheet (G) by performing at least localized heating along a preset cutting line (5) of the glass sheet (G), the method comprising cutting a full body of the glass sheet (G) by performing at least the localized heating along the preset cutting line (5) of the glass sheet (G) under a state in which support members (2 (8)) for supporting, from a back surface side of the glass sheet (G), portions of the glass sheet (G) that are situated apart from the preset cutting line (5) toward both sides thereof are arranged apart from each other so as to form a space (S) on the back surface side of the preset cutting line (8).
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: October 4, 2016
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Yasuo Teranishi, Yasuhiro Matsumoto, Taiki Minari, Takaya Furuta